• Chest · Feb 2013

    Comparative Study

    Corrected end-tidal P(CO(2)) accurately estimates Pa(CO(2)) at rest and during exercise in morbidly obese adults.

    • Vipa Bernhardt, Santiago Lorenzo, Tony G Babb, and Gerald S Zavorsky.
    • Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX.
    • Chest. 2013 Feb 1;143(2):471-7.

    BackgroundObesity affects lung function and gas exchange and imposes mechanical ventilatory limitations during exercise that could disrupt the predictability of Pa(CO(2)) from end-tidal P(CO(2)) (P(ETCO(2))), an important clinical tool for assessing gas exchange efficiency during exercise testing. Pa(CO(2)) has been estimated during exercise with good accuracy in normal-weight individuals by using a correction equation developed by Jones and colleagues (P(JCO(2)) = 5.5 + 0.9 x P(ETCO(2)) – 2.1 x tidal volume). The purpose of this project was to determine the accuracy of Pa(CO(2)) estimations from P(ETCO(2)) and P(JCO(2)) values at rest and at submaximal and peak exercise in morbidly obese adults.MethodsPa(CO(2)) and P(ETCO(2)) values from 37 obese adults (22 women, 15 men; age, 39 ± 9 y; BMI, 49 ± 7; [mean ± SD]) were evaluated. Subjects underwent ramped cardiopulmonary exercise testing to volitional exhaustion. P(ETCO(2)) was determined from expired gases simultaneously with temperature-corrected arterial blood gases (radial arterial catheter) at rest, every minute during exercise, and at peak exercise. Data were analyzed using paired t tests.ResultsP(ETCO(2)) was not significantly different from Pa(CO(2)) at rest (P(ETCO(2)) = 37 ± 3 mm Hg vs Pa(CO(2)) = 38 ± 3 mm Hg, P = .14). However, during exercise, P(ETCO(2)) was significantly higher than Pa(CO(2)) (submaximal: 42 ± 4 vs 40 ± 3, P < .001; peak: 40 ± 4 vs 37 ± 4, P < .001, respectively). Jones’ equation successfully corrected P(ETCO(2)), such that P(JCO(2)) was not significantly different from Pa(CO(2)) (submax: P(JCO(2)) = 40 ± 3, P = .650; peak: 37 ± 4, P = .065).ConclusionP(JCO(2)) provides a better estimate of Pa(CO(2)) than P(ETCO(2)) during submaximal exercise and at peak exercise, whereas at rest both yield reasonable estimates in morbidly obese individuals. Clinicians and physiologists can obtain accurate estimations of Pa(CO(2)) in morbidly obese individuals by using P(JCO(2)).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.