• J Vis Exp · Jan 2011

    An investigation of the effects of sports-related concussion in youth using functional magnetic resonance imaging and the head impact telemetry system.

    • Michelle Keightley, Stephanie Green, Nick Reed, Sabrina Agnihotri, Amy Wilkinson, and Nancy Lobaugh.
    • Occupational Science and Occupational Therapy, University of Toronto. michelle.keightley@utoronto.ca
    • J Vis Exp. 2011 Jan 1(47).

    AbstractOne of the most commonly reported injuries in children who participate in sports is concussion or mild traumatic brain injury (mTBI). Children and youth involved in organized sports such as competitive hockey are nearly six times more likely to suffer a severe concussion compared to children involved in other leisure physical activities. While the most common cognitive sequelae of mTBI appear similar for children and adults, the recovery profile and breadth of consequences in children remains largely unknown, as does the influence of pre-injury characteristics (e.g. gender) and injury details (e.g. magnitude and direction of impact) on long-term outcomes. Competitive sports, such as hockey, allow the rare opportunity to utilize a pre-post design to obtain pre-injury data before concussion occurs on youth characteristics and functioning and to relate this to outcome following injury. Our primary goals are to refine pediatric concussion diagnosis and management based on research evidence that is specific to children and youth. To do this we use new, multi-modal and integrative approaches that will: 1. Evaluate the immediate effects of head trauma in youth. 2. Monitor the resolution of post-concussion symptoms (PCS) and cognitive performance during recovery. 3. Utilize new methods to verify brain injury and recovery. To achieve our goals, we have implemented the Head Impact Telemetry (HIT) System. (Simbex; Lebanon, NH, USA). This system equips commercially available Easton S9 hockey helmets (Easton-Bell Sports; Van Nuys, CA, USA) with single-axis accelerometers designed to measure real-time head accelerations during contact sport participation. By using telemetric technology, the magnitude of acceleration and location of all head impacts during sport participation can be objectively detected and recorded. We also use functional magnetic resonance imaging (fMRI) to localize and assess changes in neural activity specifically in the medial temporal and frontal lobes during the performance of cognitive tasks, since those are the cerebral regions most sensitive to concussive head injury. Finally, we are acquiring structural imaging data sensitive to damage in brain white matter.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.