• Surgery · Feb 2015

    Gene therapy using therapeutic and diagnostic recombinant oncolytic vaccinia virus GLV-1h153 for management of colorectal peritoneal carcinomatosis.

    • Clarisse Eveno, Kelly Mojica, Justin W Ady, Daniel L J Thorek, Valerie Longo, Laurence J Belin, Sepideh Gholami, Clark Johnsen, Pat Zanzonico, Nanhai Chen, Tony Yu, Aladar A Szalay, and Yuman Fong.
    • Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY.
    • Surgery. 2015 Feb 1;157(2):331-7.

    BackgroundPeritoneal carcinomatosis (PC) is a terminal progression of colorectal cancer (CRC). Poor response to cytoreductive operation and chemotherapy coupled with the inability to reliably track disease progression by the use of established diagnostic methods, make this a deadly disease. We examined the effectiveness of the oncolytic vaccinia virus GLV-1h153 as a therapeutic and diagnostic vehicle. We believe that viral expression of the human sodium iodide transporter (hNIS) provides both real-time monitoring of viral therapy and effective treatment of colorectal peritoneal carcinomatosis (CRPC).MethodsInfectivity and cytotoxic effect of GLV-1h153 on CRC cell lines was assayed in vitro. Viral replication was examined by standard viral plaque assays. Orthotopic CRPC xenografts were generated in athymic nude mice and subsequently administered GLV-1h153 intraperitoneally. A decrease in tumor burden was assessed by mass. Orthotopic tumors were visualized by single-photon emission computed tomography/computed tomography after Iodine ((131)I) administration and by fluorescence optical imaging.ResultsGLV-1h153 infected and killed CRC cells in a time- and concentration-dependent manner. Viral replication demonstrated greater than a 2.35 log increase in titer over 4 days. Intraperitoneal treatment of orthotopic CRPC xenografts resulted in a substantial decrease in tumor burden. Infection of orthotopic xenografts was therapeutic and facilitated monitoring by (131)I-single-photon emission computed tomography/computed tomography via expression of hNIS in infected tissue.ConclusionGLV-1h153 kills CRC in vitro effectively and decreases tumor burden in vivo. We demonstrate that GLV-1h153 can be used as an agent to provide accurate delineation of tumor burden in vivo. These findings indicate that GLV-1h153 has potential for use as a therapeutic and diagnostic agent in the treatment of CRPC.Copyright © 2015 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…