• Am. J. Hum. Genet. · Oct 2013

    Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms.

    • Michael R Knowles, Lawrence E Ostrowski, Niki T Loges, Toby Hurd, Margaret W Leigh, Lu Huang, Whitney E Wolf, Johnny L Carson, Milan J Hazucha, Weining Yin, Stephanie D Davis, Sharon D Dell, Thomas W Ferkol, Scott D Sagel, Kenneth N Olivier, Charlotte Jahnke, Heike Olbrich, Claudius Werner, Johanna Raidt, Julia Wallmeier, Petra Pennekamp, Gerard W Dougherty, Rim Hjeij, Heon Yung Gee, Edgar A Otto, Jan Halbritter, Moumita Chaki, Katrina A Diaz, Daniela A Braun, Jonathan D Porath, Markus Schueler, György Baktai, Matthias Griese, Emily H Turner, Alexandra P Lewis, Michael J Bamshad, Deborah A Nickerson, Friedhelm Hildebrandt, Jay Shendure, Heymut Omran, and Maimoona A Zariwala.
    • Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA. Electronic address: knowles@med.unc.edu.
    • Am. J. Hum. Genet. 2013 Oct 3;93(4):711-20.

    AbstractPrimary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 20 genes, but collectively they account for only ∼65% of all PCDs. To identify mutations in additional genes that cause PCD, we performed exome sequencing on three unrelated probands with ciliary outer and inner dynein arm (ODA+IDA) defects. Mutations in SPAG1 were identified in one family with three affected siblings. Further screening of SPAG1 in 98 unrelated affected individuals (62 with ODA+IDA defects, 35 with ODA defects, 1 without available ciliary ultrastructure) revealed biallelic loss-of-function mutations in 11 additional individuals (including one sib-pair). All 14 affected individuals with SPAG1 mutations had a characteristic PCD phenotype, including 8 with situs abnormalities. Additionally, all individuals with mutations who had defined ciliary ultrastructure had ODA+IDA defects. SPAG1 was present in human airway epithelial cell lysates but was not present in isolated axonemes, and immunofluorescence staining showed an absence of ODA and IDA proteins in cilia from an affected individual, thus indicating that SPAG1 probably plays a role in the cytoplasmic assembly and/or trafficking of the axonemal dynein arms. Zebrafish morpholino studies of spag1 produced cilia-related phenotypes previously reported for PCD-causing mutations in genes encoding cytoplasmic proteins. Together, these results demonstrate that mutations in SPAG1 cause PCD with ciliary ODA+IDA defects and that exome sequencing is useful to identify genetic causes of heterogeneous recessive disorders.Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.