-
Multicenter Study
Long-term exposure to air pollution and cardiovascular mortality: an analysis of 22 European cohorts.
- Rob Beelen, Massimo Stafoggia, Ole Raaschou-Nielsen, Zorana Jovanovic Andersen, Wei W Xun, Klea Katsouyanni, Konstantina Dimakopoulou, Bert Brunekreef, Gudrun Weinmayr, Barbara Hoffmann, Kathrin Wolf, Evangelia Samoli, Danny Houthuijs, Mark Nieuwenhuijsen, Anna Oudin, Bertil Forsberg, David Olsson, Veikko Salomaa, Timo Lanki, Tarja Yli-Tuomi, Bente Oftedal, Geir Aamodt, Per Nafstad, Ulf De Faire, Nancy L Pedersen, Claes-Göran Östenson, Laura Fratiglioni, Johanna Penell, Michal Korek, Andrei Pyko, Kirsten Thorup Eriksen, Anne Tjønneland, Thomas Becker, Marloes Eeftens, Michiel Bots, Kees Meliefste, Meng Wang, Bas Bueno-de-Mesquita, Dorothea Sugiri, Ursula Krämer, Joachim Heinrich, Kees de Hoogh, Timothy Key, Annette Peters, Josef Cyrys, Hans Concin, Gabriele Nagel, Alex Ineichen, Emmanuel Schaffner, Nicole Probst-Hensch, Julia Dratva, Regina Ducret-Stich, Alice Vilier, Françoise Clavel-Chapelon, Morgane Stempfelet, Sara Grioni, Vittorio Krogh, Ming-Yi Tsai, Alessandro Marcon, Fulvio Ricceri, Carlotta Sacerdote, Claudia Galassi, Enrica Migliore, Andrea Ranzi, Giulia Cesaroni, Chiara Badaloni, Francesco Forastiere, Ibon Tamayo, Pilar Amiano, Miren Dorronsoro, Michail Katsoulis, Antonia Trichopoulou, Paolo Vineis, and Gerard Hoek.
- From the aInstitute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; bDepartment of Epidemiology, Lazio Regional Health Service, Rome, Italy; cDanish Cancer Society Research Center, Copenhagen, Denmark; dCenter for Epidemiology and Screening, Department of Public Health, University of Copenhagen, CSS, København K, Denmark; eMRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, St Mary's Campus, London, United Kingdom; fUniversity College London, CeLSIUS, London, United Kingdom; gDepartment of Hygiene, Epidemiology, and Medical Statistics, Medical School, University of Athens, Athens, Greece; hJulius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands; iInstitute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; jIUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany, and Medical Faculty, University of Düsseldorf, Düsseldorf, Germany; kInstitute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; lNational Institute for Public Health and the Environment, Bilthoven, The Netherlands; mCentre for Research in Environmental Epidemiology (CREAL), Barcelona, and Parc de Recerca Biomèdica de Barcelona-PRBB (office 183.05) C. Doctor Aiguader, Barcelona, Spain; nConsortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Melchor Fernández Almagro 3-5, Madrid, Spain; oDivision of Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden; pNational Institute for Health and Welfare, Kuopio, Finland; qNorwegian Institute of Public Health, Oslo, Norway; rInstitute of Health and Society, University of Oslo, Oslo, Norway; sInstitute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; tDepartm
- Epidemiology. 2014 May 1;25(3):368-78.
BackgroundAir pollution has been associated with cardiovascular mortality, but it remains unclear as to whether specific pollutants are related to specific cardiovascular causes of death. Within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE), we investigated the associations of long-term exposure to several air pollutants with all cardiovascular disease (CVD) mortality, as well as with specific cardiovascular causes of death.MethodsData from 22 European cohort studies were used. Using a standardized protocol, study area-specific air pollution exposure at the residential address was characterized as annual average concentrations of the following: nitrogen oxides (NO2 and NOx); particles with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM10), and 10 μm to 2.5 μm (PMcoarse); PM2.5 absorbance estimated by land-use regression models; and traffic indicators. We applied cohort-specific Cox proportional hazards models using a standardized protocol. Random-effects meta-analysis was used to obtain pooled effect estimates.ResultsThe total study population consisted of 367,383 participants, with 9994 deaths from CVD (including 4,992 from ischemic heart disease, 2264 from myocardial infarction, and 2484 from cerebrovascular disease). All hazard ratios were approximately 1.0, except for particle mass and cerebrovascular disease mortality; for PM2.5, the hazard ratio was 1.21 (95% confidence interval = 0.87-1.69) per 5 μg/m and for PM10, 1.22 (0.91-1.63) per 10 μg/m.ConclusionIn a joint analysis of data from 22 European cohorts, most hazard ratios for the association of air pollutants with mortality from overall CVD and with specific CVDs were approximately 1.0, with the exception of particulate mass and cerebrovascular disease mortality for which there was suggestive evidence for an association.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.