• Ann. Thorac. Surg. · Aug 2015

    Hypotension After Cardiac Operations Based on Autoregulation Monitoring Leads to Brain Cellular Injury.

    • Daijiro Hori, Masahiro Ono, Thomas E Rappold, John V Conte, Ashish S Shah, Duke E Cameron, Hideo Adachi, Allen D Everett, and Charles W Hogue.
    • Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
    • Ann. Thorac. Surg. 2015 Aug 1; 100 (2): 487-93.

    BackgroundIndividualizing blood pressure targets could improve organ perfusion compared with current practices. In this study we assess whether hypotension defined by cerebral autoregulation monitoring vs standard definitions is associated with elevation in the brain-specific injury biomarker glial fibrillary acidic protein plasma levels (GFAP).MethodsPlasma GFAP levels were measured in 121 patients undergoing cardiac operations after anesthesia induction, at the conclusion of the operation, and on postoperative day 1. Cerebral autoregulation was monitored during the operation with the cerebral oximetry index, which correlates low-frequency changes in mean arterial pressure (MAP) and regional cerebral oxygen saturation. Blood pressure was recorded every 15 minutes in the intensive care unit. Hypotension was defined based on autoregulation data as an MAP below the optimal MAP (MAP at the lowest cerebral oximetry index) and based on standard definitions (systolic blood pressure decrement >20%, >30% from baseline, or <100 mm Hg, or both).ResultsMAP (mean ± standard deviation) in the intensive care unit was 74 ± 7.3 mm Hg; optimal MAP was 78 ± 12.8 mm Hg (p = 0.008). The incidence of hypotension varied from 22% to 37% based on standard definitions but occurred in 54% of patients based on the cerebral oximetry index (p < 0.001). There was no relationship between standard definitions of hypotension and plasma GFAP levels, but MAP of less than optimal was positively related with postoperative day 1 GFAP levels (coefficient, 1.77; 95% confidence interval, 1.27 to 2.48; p = 0.001) after adjusting for GFAP levels at the conclusion of the operation and low cardiac output syndrome.ConclusionsIndividualizing blood pressure management using cerebral autoregulation monitoring may better ensure brain perfusion than current practice.Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.