• Anesthesia and analgesia · Nov 2009

    Propofol inhibits aquaporin 4 expression through a protein kinase C-dependent pathway in an astrocyte model of cerebral ischemia/reoxygenation.

    • Sheng-Mei Zhu, Xiao-Xing Xiong, Yue-Ying Zheng, and Cai-Fei Pan.
    • Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hang Zhou 310003, People's Republic of China. smzhu20088@yahoo.com.c
    • Anesth. Analg. 2009 Nov 1;109(5):1493-9.

    BackgroundAquaporin 4 (AQP4) plays a key role in maintaining water balance in the central nervous system, and its dysfunction may lead to brain edema. Previous studies have suggested that propofol may be involved in neuroprotection by preventing brain edema. In this study, we examined the effects of propofol on edema and assessed its neuroprotective actions in an oxygen and glucose deprivation (OGD) model of cultured rat astrocytes. We assessed the effects of propofol on AQP4 expression and the possible role of the protein kinase C (PKC) pathway on this effect.MethodsNeocortical astrocytes were exposed to OGD in an anaerobic chamber. After 6 h of OGD exposure, astrocytes were subsequently subjected to 24 h of reoxygenation. Propofol was added during the OGD phase of the model. Cell morphology was assessed by light microscopy. Astrocyte viability was assessed by measuring 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide absorbency (optical density value) and the percentage of lactate dehydrogenase released by injured astrocytes. AQP4 expression was evaluated with Western blot analysis. To investigate the possible mechanism of propofol's effects on AQP4 expression, cultured astrocytes were pretreated for 24 h with the PKC activator, 12-O-tetradecanoylphorbol 13-acetate, before the propofol treatment/OGD 6 h/reoxygenation 24 h.ResultsWe found by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide testing that astrocyte viability began to decrease after about 4 h of OGD exposure and decreased to 60% after 6 h of OGD. When 6 h of OGD was followed by 24 h of reoxygenation, cell viability was further decreased. AQP4 expression was attenuated after 6 h of OGD exposure but was reversed and exceeded baseline levels after 24 h of reoxygenation. Propofol dose-dependently reduced cell death assessed by lactate dehydrogenase test (P < 0.05), and 10 muM propofol significantly down-regulated AQP4 expression in astrocytes after 6 h of OGD followed by 24 h of reoxygenation (P < 0.01). Prolonged (24 h) pretreatment with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate before OGD significantly reversed the effect of propofol on AQP4 expression (P < 0.01).ConclusionPropofol, administered during OGD, provided neuroprotective effects and down-regulated AQP4 expression in the OGD/reoxygenation model of cultured rat astrocytes. Activation of the PKC pathway may block the effects of propofol.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.