-
J. Cardiothorac. Vasc. Anesth. · Feb 2009
Comparative StudyMicrocirculatory imaging in cardiac anesthesia: ketanserin reduces blood pressure but not perfused capillary density.
- Paul W G Elbers, Alaattin Ozdemir, Mat van Iterson, Eric P A van Dongen, and Can Ince.
- Department of Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. info@acidbase.org
- J. Cardiothorac. Vasc. Anesth. 2009 Feb 1;23(1):95-101.
ObjectivesIt has become possible to image the human microcirculation at the bedside using sidestream dark field (SDF) imaging. This may help the clinician when correlation between global and microvascular hemodynamics may not be straightforward. Ketanserin, a serotonin and alpha-1 adrenoceptor antagonist, is used in some countries to treat elevated blood pressure after extracorporeal circulation. This might hamper microcirculatory perfusion. Conversely, it is also conceivable that microcirculatory flow is maintained or improved as a result of flow redistribution. In order to introduce SDF imaging in cardiac anesthesia, the authors set out to directly observe the sublingual microcirculation in this setting.DesignAn observational study.SettingA large teaching hospital.ParticipantsMechanically ventilated patients with elevated arterial blood pressure immediately after extracorporeal circulation (ECC).InterventionAn intravenous bolus of ketanserin, 0.15 mg/kg.Measurements And Main ResultsFive minutes before and 10 minutes after ketanserin administration, global hemodynamic variables were recorded. In addition, the authors used SDF imaging to record video clips of the microcirculation. Analysis of these allowed for quantification of microvascular hemodynamics including determination of perfused vessel density (PVD) and microcirculatory flow index (MFI). After ketanserin administration, there was a significant reduction in systolic arterial blood pressure (129 +/- 9 to 100 +/- 15 mmHg, p = 0.0001). At the level of the microcirculation, the mean MFI did not change significantly for small (diameter <20 microm, 2.79 [interquartile range, 1.38-3] to 2.38 [1.88-2.75], p = 0.62) or large (diameter >20 microm, 2.83 [1.4-3] to 2.67 [0.35-2.84] p = 1.0) vessels. There was a significant increase in mean PVD for large vessels (1.23 +/- 0.63 to 1.70 +/- 79 mm(-1), p = 0.017) but not for small vessels (5.59 +/- 2.60 to 5.87 +/- 1.22 mm(-1), p = 0.72) where red blood cell flow was maintained.ConclusionsSDF imaging clearly showed a discrepancy between global and microvascular hemodynamics after the administration of ketanserin for elevated blood pressure after ECC. Ketanserin effectively lowers arterial blood pressure. However, capillary perfusion is maintained at a steady value. Both effects may be explained by an increase in shunting in the larger vessels of the microcirculation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.