• Neurology · Dec 2013

    A prospective study of gray matter abnormalities in mild traumatic brain injury.

    • Josef M Ling, Stefan Klimaj, Trent Toulouse, and Andrew R Mayer.
    • From The Mind Research Network Lovelace Biomedical and Environmental Research Institute (J.M.L., S.K., T.T., A.R.M.), Albuquerque; Department of Psychology (A.R.M.), University of New Mexico, Albuquerque; and Neurology Department (A.R.M.), University of New Mexico School of Medicine, Albuquerque, NM.
    • Neurology. 2013 Dec 10;81(24):2121-7.

    ObjectiveTo examine the underlying pathophysiology of mild traumatic brain injury through changes in gray matter diffusion and atrophy during the semiacute stage.MethodsFifty patients and 50 sex-, age-, and education-matched controls were evaluated with a clinical and neuroimaging battery approximately 14 days postinjury, with 26 patients returning for follow-up 4 months postinjury. Clinical measures included tests of attention, processing speed, executive function, working memory, memory, and self-reported postconcussive symptoms. Measures of diffusion (fractional anisotropy [FA], mean diffusivity) and atrophy were obtained for cortical and subcortical structures to characterize effects of injury as a function of time.ResultsPatients reported more cognitive, somatic, and emotional complaints during the semiacute injury phase, which were significantly reduced 4 months postinjury. Patients showed evidence of increased FA in the bilateral superior frontal cortex during the semiacute phase, with the left superior frontal cortex remaining elevated 4 months postinjury. There were no significant differences between patients and matched controls on neuropsychological testing or measures of gray matter atrophy/mean diffusivity at either time point.ConclusionsIncreased cortical FA is largely consistent with an emerging animal literature of gray matter abnormalities after neuronal injury. Potential mechanistic explanations for increased FA include cytotoxic edema or reactive gliosis. In contrast, there was no evidence of cortical or subcortical atrophy in the current study, suggesting that frank neuronal or neuropil loss does not occur early in the chronic disease course for patients with typical mild traumatic brain injury.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.