• Br. J. Pharmacol. · May 2006

    Spinal alpha(2)-adrenergic and muscarinic receptors and the NO release cascade mediate supraspinally produced effectiveness of gabapentin at decreasing mechanical hypersensitivity in mice after partial nerve injury.

    • Keiko Takasu, Motoko Honda, Hideki Ono, and Mitsuo Tanabe.
    • Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
    • Br. J. Pharmacol. 2006 May 1;148(2):233-44.

    AbstractAfter partial nerve injury, the central analgesic effect of systemically administered gabapentin is mediated by both supraspinal and spinal actions. We further evaluate the mechanisms related to the supraspinally mediated analgesic actions of gabapentin involving the descending noradrenergic system. Intracerebroventricularly (i.c.v.) administered gabapentin (100 microg) decreased thermal and mechanical hypersensitivity in a murine chronic pain model that was prepared by partial ligation of the sciatic nerve. These effects were abolished by intrathecal (i.t.) injection of either yohimbine (3 microg) or idazoxan (3 microg), alpha(2)-adrenergic receptor antagonists. Pretreatment with atropine (0.3 mg kg(-1), i.p. or 0.1 microg, i.t.), a muscarinic receptor antagonist, completely suppressed the effect of i.c.v.-injected gabapentin on mechanical hypersensitivity, whereas its effect on thermal hypersensitivity remained unchanged. Similar effects were obtained with pirenzepine (0.1 microg, i.t.), a selective M(1)-muscarinic receptor antagonist, but not with methoctramine (0.1 and 0.3 microg, i.t.), a selective M(2)-muscarinic receptor antagonist. The cholinesterase inhibitor neostigmine (0.3 ng, i.t.) potentiated only the analgesic effect of i.c.v. gabapentin on mechanical hypersensitivity, confirming spinal acetylcholine release downstream of the supraspinal action of gabapentin. Moreover, the effect of i.c.v. gabapentin on mechanical but not thermal hypersensitivity was reduced by i.t. injection of L-NAME (3 microg) or L-NMMA (10 microg), both of which are nitric oxide (NO) synthase inhibitors. Systemically administered naloxone (10 mg kg(-1), i.p.), an opioid receptor antagonist, failed to suppress the analgesic actions of i.c.v. gabapentin, indicating that opioid receptors are not involved in activation of the descending noradrenergic system by gabapentin. Thus, the supraspinally mediated effect of gabapentin on mechanical hypersensitivity involves activation of spinal alpha(2)-adrenergic receptors followed by muscarinic receptors (most likely M(1)) and the NO cascade. In contrast, the effect of supraspinal gabapentin on thermal hypersensitivity is independent of the spinal cholinergic-NO system.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.