• Journal of neurotrauma · Jul 2016

    Smaller Dentate Gyrus and CA 2 & 3 volumes are associated with kynurenine metabolites in collegiate football athletes.

    • Timothy B Meier, Jonathan Savitz, Rashmi Singh, T Kent Teague, and Patrick S F Bellgowan.
    • 1 Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, Wisconsin.
    • J. Neurotrauma. 2016 Jul 15; 33 (14): 1349-57.

    AbstractAn imbalance in kynurenine pathway metabolism is hypothesized to be associated with dysregulated glutamatergic neurotransmission, which has been proposed as a mechanism underlying the hippocampal volume loss observed in a variety of neurological disorders. Pre-clinical models suggest that the CA2-3 and dentate gyrus hippocampal subfields are particularly susceptible to excitotoxicity after experimental traumatic brain injury. We tested the hypothesis that smaller hippocampal volumes in collegiate football athletes with (n = 25) and without (n = 24) a concussion history would be most evident in the dentate gyrus and CA2-3 subfields relative to nonfootball healthy controls (n = 27). Further, we investigated whether the concentration of peripheral levels of kynurenine metabolites are altered in football athletes. Football athletes with and without a self-reported concussion history had smaller dentate gyrus (p < 0.05, p < 0.10) and CA2-3 volumes (p's < 0.05) relative to healthy controls. Football athletes with and without a concussion history had a trend toward lower (p < 0.10) and significantly lower (p < 0.05) kynurenine levels compared with healthy controls, while athletes with a concussion history had greater levels of quinolinic acid compared with athletes without a concussion history (p < 0.05). Finally, plasma levels of 3-hydroxykynurenine inversely correlated with bilateral hippocampal volumes in football athletes with a concussion history (p < 0.01), and left hippocampal volume was correlated with the ratio of kynurenic acid to quinolinic acid in football athletes without a concussion history (p < 0.05). Our results raise the possibility that abnormalities of the kynurenine metabolic pathway constitute a mechanism for hippocampal volume differences in the context of sports-related brain injury.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.