• Journal of neurotrauma · Feb 2012

    Multicenter Study

    Computer implementation of the international standards for neurological classification of spinal cord injury for consistent and efficient derivation of its subscores including handling of data from not testable segments.

    • Christian Schuld, Julia Wiese, Andreas Hug, Cornelia Putz, Hubertus J A van Hedel, Martina R Spiess, Norbert Weidner, Weidner EM-SCI Study Group, and Rüdiger Rupp.
    • Heidelberg University Hospital, Spinal Cord Injury Center, Heidelberg, Germany. Christian.Schuld@med.uni-heidelberg.de
    • J. Neurotrauma. 2012 Feb 10;29(3):453-61.

    AbstractThe International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI), defined by the American Spinal Injury Association (ASIA), and particularly the ASIA Impairment Scale (AIS) are widely used for research and clinical purposes. Although detailed procedures for scaling, scoring, and classification have been defined, misclassifications remain a major problem, especially for cases with missing (i.e., not testable [NT]) data. This work aimed to implement computer-based classification algorithms that included rules for handling NT data. A consistent and structured algorithmic scoring, scaling, and classification scheme, and a computerized application have been developed by redefining logical/mathematical imprecisions. Existing scoring rules are extended for handling NT segments. Design criterion is a pure logical approach so that substitution of non-testability for all valid examination scores leads to concordant results. Nine percent of 5542 datasets from 1594 patients in the database of the European Multicenter Study of Human Spinal Cord Injury (EM-SCI) contained NT segments. After adjusting computational algorithms, the classification accuracy was equivalent between clinical experts and the computational approach and resulted in 84% valid AIS classifications within datasets containing NT. Additionally, the computational method is much more efficient, processing approximately 200,000 classifications/sec. Computational algorithms offer the ability to classify ISNCSCI subscores efficiently and without the risk of human-induced errors. This is of particular clinical relevance, since these scores are used for early predictions of neurological recovery and functional outcome for patients with spinal cord injuries.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…