• Neuropsychopharmacology · Mar 2014

    Sub-anesthetic ketamine modulates intrinsic BOLD connectivity within the hippocampal-prefrontal circuit in the rat.

    • Natalia Gass, Adam James Schwarz, Alexander Sartorius, Esther Schenker, Celine Risterucci, Michael Spedding, Lei Zheng, Andreas Meyer-Lindenberg, and Wolfgang Weber-Fahr.
    • Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
    • Neuropsychopharmacology. 2014 Mar 1;39(4):895-906.

    AbstractDysfunctional connectivity within the hippocampal-prefrontal circuit (HC-PFC) is associated with schizophrenia, major depression, and neurodegenerative disorders, and both the hippocampus and prefrontal cortex have dense populations of N-methyl-D-aspartate (NMDA) receptors. Ketamine, a potent NMDA receptor antagonist, is of substantial current interest as a mechanistic model of glutamatergic dysfunction in animal and human studies, a psychotomimetic agent and a rapidly acting antidepressant. In this study, we sought to understand the modulatory effect of acute ketamine administration on functional connectivity in the HC-PFC system of the rat brain using resting-state fMRI. Sprague-Dawley rats in four parallel groups (N=9 per group) received either saline or one of three behaviorally relevant, sub-anesthetic doses of S-ketamine (5, 10, and 25 mg/kg, s.c.), and connectivity changes 15- and 30-min post-injection were studied. The strongest effects were dose- and exposure-dependent increases in functional connectivity within the prefrontal cortex and in anterior-posterior connections between the posterior hippocampus and retrosplenial cortex, and prefrontal regions. The increased prefrontal connectivity is consistent with ketamine-induced increases in HC-PFC electroencephalographic gamma band power, possibly reflecting a psychotomimetic aspect of ketamine's effect, and is contrary to the data from chronic schizophrenic patients suggesting that ketamine effect does not necessarily parallel the disease pattern but might rather reflect a hyperglutamatergic state. These findings may help to clarify the brain systems underlying different dose-dependent behavioral profiles of ketamine in the rat.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…