• J Neurosurg Spine · Aug 2007

    Wear simulation of the ProDisc-L disc replacement using adaptive finite element analysis.

    • Jeremy J Rawlinson, Karan P Punga, Kirk L Gunsallus, Donald L Bartel, and Timothy M Wright.
    • Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA. jjr4@cornell.edu
    • J Neurosurg Spine. 2007 Aug 1;7(2):165-73.

    ObjectAn understanding of the wear potential of total disc replacements (TDRs) is critical as these new devices are increasingly introduced into clinical practice. The authors analyzed the wear potential of a ProDisc-L implant using an adaptive finite element (FE) technique in a computational simulation representing a physical wear test.MethodsThe framework for calculating abrasive wear, first validated using a model of a total hip replacement (THR), was then used to model the ProDisc-L polyethylene component that is fixed to the inferior endplate and articulates with the rigid superior endplate. Proposed standards for spine wear testing protocols specified the inputs of flexion-extension (6/-3 degrees), lateral bending (+/- 2 degrees), axial twist (+/- 1.5 degrees), and axial load (200-1750 N or 600-2000 N) applied to the model through 10 million simulation cycles. The model was calibrated with a wear coefficient determined from an experimental wear test. Implicit FE analyses were then performed for variations in coefficient of friction, polyethylene elastic modulus, radial clearance, and polyethylene component thickness to investigate their effects on wear.ResultsUsing the initial loading protocol (single-peaked axial load profile of 300-1750 N) from the experimental wear test, the polyethylene wear rate was 9.82 mg per million cycles. When a double-peaked loading profile (600-2000 N) was applied, the wear rate increased to 11.77 mg per million cycles. Parametric design variations produced only small changes in wear rates for this simulation.ConclusionsThe chosen design variables had little effect on the resultant wear rates. The comparable wear rate for the THR validation analysis was 16.17 mg per million cycles, indicating that, using this framework, the wear potential of the TDR was equivalent to, if not better, than the THR using joint-specific loading standards.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…