• Rural Remote Health · Jan 2011

    Using technology to deliver healthcare education to rural patients.

    • Carol V McIlhenny, Brenda L Guzic, Dawna R Knee, Camille M Wendekier, Barbara R Demuth, and Jay B Roberts.
    • Saint Francis University, Loretto, PA, USA. cmcilhenny@cermusa.francis.edu
    • Rural Remote Health. 2011 Jan 1;11(4):1798.

    IntroductionThe prevalence of chronic disease in the US population is increasing. Projections indicate that half the US population will live with at least one chronic disease by the year 2030. Statistics indicate that chronic illnesses account for 70% of all deaths. Developing healthy self-management behaviors can lower the risk of developing chronic disease and also minimize the magnitude of subsequent morbidity and disability. Individuals need access to reliable information in order to learn successful self-management skills. Delivering healthcare information in rural areas is difficult. Geography, distance, inclement weather and/or the lack of financial resources are barriers that can prevent individuals from accessing health care and health education. Likewise, rural health clinics often lack the financial resources to provide the most current patient education materials. However, the internet allows remote and immediate access to this type of information if individuals know how and where to search for it. An internet portal, My Health Education & Resources Online (MyHERO) was created to facilitate locating current, non-commercial, reliable, evidence-based health information. The authors sought to assess the impact of a publically accessible internet information portal on diabetes knowledge, quality of life (QOL) measures, and self-management behaviors in a US rural area.MethodsParticipants (n=48) with type 2 diabetes in one clinic received regularly scheduled, one-on-one individualized diabetes-related health education and hands-on instructions on how to use an internet portal from a nurse educator. Each health clinic was supplied with a laptop computer for participants to use if they lacked internet access. Control participants (n=50) in a second clinic received a pamphlet describing how to access the portal. All participants completed baseline and end-of-study surveys. Disease knowledge was measured with the BASICS test developed by the International Diabetes Center. Problem Areas In Diabetes (PAID), developed by the Joslin Diabetes Center, was utilized to measure diabetes QOL. All participants completed a behavior modification survey at the conclusion of the study. Intervention participants were asked to complete a satisfaction survey at the conclusion of the study. Demographic and relevant laboratory values (eg serum glucose, HbA1c, lipids) were collected via chart review at baseline, 3, and 6 months.ResultsDemographic and baseline scores were similar between groups. At 6 months, the intervention group showed significant increases in disease knowledge and self-blood glucose monitoring behavior. There were no differences in QOL between the groups at 6 months. Participants in the intervention group were highly satisfied with the nurse educator, but not with the internet as a resource.ConclusionDisease knowledge and self-blood glucose monitoring improved with one-on-one education. High attrition and a short study period were limitations of this study. The researchers speculate that the age of the participants and low internet penetration affected satisfaction scores. Future recommendations include a longer data collection period, more widespread publically accessible internet kiosks (grocery stores, malls, churches etc), other chronic disease states, and younger participants.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.