-
- G Cheng and J J Kendig.
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California, USA.
- Anesthesiology. 2000 Oct 1;93(4):1075-84.
BackgroundThe spinal cord is an important anatomic site at which volatile agents act to prevent movement in response to a noxious stimulus. This study was designed to test the hypothesis that enflurane acts directly on motor neurons to inhibit excitatory synaptic transmission at glutamate receptors.MethodsWhole-cell recordings were made in visually identified motor neurons in spinal cord slices from 1- to 4-day-old mice. Excitatory postsynaptic currents (EPSCs) or potentials (EPSPs) were evoked by electrical stimulation of the dorsal root entry area or dorsal horn. The EPSCs were isolated pharmacologically into glutamate N-methyl-d-aspartate (NMDA) receptor- and non-NMDA receptor-mediated components by using selective antagonists. Currents also were evoked by brief pulse pressure ejection of glutamate under various conditions of pharmacologic blockade. Enflurane was made up as a saturated stock solution and diluted in the superfusate; concentrations were measured using gas chromatography.ResultsExcitatory postsynaptic currents and EPSPs recorded from motor neurons by stimulation in the dorsal horn were mediated by glutamate receptors of both non-NMDA and NMDA subtypes. Enflurane at a general anesthetic concentration (one minimum alveolar anesthetic concentration) reversibly depressed EPSCs and EPSPs. Enflurane also depressed glutamate-evoked currents in the presence of tetrodotoxin (300 nm), showing that its actions are postsynaptic. Block of inhibitory gamma-aminobutyric acid A and glycine receptors by bicuculline (20 micrometer) or strychnine (2 micrometer) or both did not significantly reduce the effects of enflurane on glutamate-evoked currents. Enflurane also depressed glutamate-evoked currents if the inhibitory receptors were blocked and if either D,L-2-amino-5-phosphonopentanoic acid (50 micrometer) or 6-cyano-7-nitroquinoxaline-2,3-dione disodium (10 micrometer) was applied to block NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-kainate receptors respectively.ConclusionsEnflurane exerts direct depressant effects on both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and NMDA glutamate currents in motor neurons. Enhancement of gamma-aminobutyric acid A and glycine inhibition is not needed for this effect. Direct depression of glutamatergic excitatory transmission by a postsynaptic action on motor neurons thus may contribute to general anesthesia as defined by immobility in response to a noxious stimulus.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.