• Critical care medicine · Feb 2016

    Multicenter Study

    A Severe Sepsis Mortality Prediction Model and Score for Use With Administrative Data.

    • Dee W Ford, Andrew J Goodwin, Annie N Simpson, Emily Johnson, Nandita Nadig, and Kit N Simpson.
    • 1Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, SC. 2Department of Healthcare Leadership and Management, College of Health Professions, Medical University of South Carolina, Charleston, SC.
    • Crit. Care Med. 2016 Feb 1; 44 (2): 319-27.

    ObjectiveAdministrative data are used for research, quality improvement, and health policy in severe sepsis. However, there is not a sepsis-specific tool applicable to administrative data with which to adjust for illness severity. Our objective was to develop, internally validate, and externally validate a severe sepsis mortality prediction model and associated mortality prediction score.DesignRetrospective cohort study using 2012 administrative data from five U.S. states. Three cohorts of patients with severe sepsis were created: 1) International Classification of Diseases, 9th Revision, Clinical Modification codes for severe sepsis/septic shock, 2) Martin approach, and 3) Angus approach. The model was developed and internally validated in International Classification of Diseases, 9th Revision, Clinical Modification, cohort and externally validated in other cohorts. Integer point values for each predictor variable were generated to create a sepsis severity score.SettingAcute care, nonfederal hospitals in New York, Maryland, Florida, Michigan, and Washington.SubjectsPatients in one of three severe sepsis cohorts: 1) explicitly coded (n = 108,448), 2) Martin cohort (n = 139,094), and 3) Angus cohort (n = 523,637) INTERVENTIONS: None.Measurements And Main ResultsMaximum likelihood estimation logistic regression to develop a predictive model for in-hospital mortality. Model calibration and discrimination assessed via Hosmer-Lemeshow goodness-of-fit and C-statistics, respectively. Primary cohort subset into risk deciles and observed versus predicted mortality plotted. Goodness-of-fit demonstrated p value of more than 0.05 for each cohort demonstrating sound calibration. C-statistic ranged from low of 0.709 (sepsis severity score) to high of 0.838 (Angus cohort), suggesting good to excellent model discrimination. Comparison of observed versus expected mortality was robust although accuracy decreased in highest risk decile.ConclusionsOur sepsis severity model and score is a tool that provides reliable risk adjustment for administrative data.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…