-
- Thomas P James, John J Pearlman, and Anil Saigal.
- Laboratory for Biomechanical Studies, Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA. Electronic address: thomas.james@tufts.edu.
- Med Eng Phys. 2013 Nov 1;35(11):1638-44.
AbstractBone sawing simulators with force feedback represent a cost effective means of training orthopedic surgeons in various surgical procedures, such as total knee arthroplasty. To develop a machine with accurate haptic feedback, giving a sensation of both cutting force and rate of material removal, algorithms are required to forecast bone sawing forces based on user input. Presently, studies on forces generated while machining bone are not representative of the high cutting speeds and low depths of cut common to the bone sawing process. The objective of this research was to quantify sawing forces in cortical bone as a function of blade speed and depth of cut. A fixture was developed to simulate linear bone sawing over a range of speeds comparable to surgical reciprocating and oscillating (sagittal) bone saws. A single saw blade tooth was isolated and used to create a slotted cut in bovine cortical bone. Over a range in linear sawing speed from 1700 to 7000 mm/s, a t-test (α=0.05) revealed there was no statistically significant effect of blade speed on either cutting or thrust force. However, an increase in depth of cut from 2 to 10 μm resulted in a 30% increase in thrust force, while cutting force remained constant. The increase in thrust force with depth of cut was relatively linear, R(2)=0.80. Using a two factor, two level design of experiments approach, regression equations were developed to relate sawing forces to changes in blade speed and depth of cut. These equations can be used to predict forces in a haptic feedback model.Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.