• Journal of neurotrauma · Jul 2012

    Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury.

    • Jacques Goeller, Andrew Wardlaw, Derrick Treichler, and Joseph O'Bruba.
    • Advanced Technology and Research Corporation, Columbia, MD 21046, USA. jgoeller@atrcorp.com
    • J. Neurotrauma. 2012 Jul 1;29(10):1970-81.

    AbstractCavitation was investigated as a possible damage mechanism for war-related traumatic brain injury (TBI) due to an improvised explosive device (IED) blast. When a frontal blast wave encounters the head, a shock wave is transmitted through the skull, cerebrospinal fluid (CSF), and tissue, causing negative pressure at the contrecoup that may result in cavitation. Numerical simulations and shock tube experiments were conducted to determine the possibility of cranial cavitation from realistic IED non-impact blast loading. Simplified surrogate models of the head consisted of a transparent polycarbonate ellipsoid. The first series of tests in the 18-inch-diameter shock tube were conducted on an ellipsoid filled with degassed water to simulate CSF and tissue. In the second series, Sylgard gel, surrounded by a layer of degassed water, was used to represent the tissue and CSF, respectively. Simulated blast overpressure in the shock tube tests ranged from a nominal 10-25 pounds per square inch gauge (psig; 69-170 kPa). Pressure in the simulated CSF was determined by Kulite thin line pressure sensors at the coup, center, and contrecoup positions. Using video taken at 10,000 frames/sec, we verified the presence of cavitation bubbles at the contrecoup in both ellipsoid models. In all tests, cavitation at the contrecoup was observed to coincide temporally with periods of negative pressure. Collapse of the cavitation bubbles caused by the surrounding pressure and elastic rebound of the skull resulted in significant pressure spikes in the simulated CSF. Numerical simulations using the DYSMAS hydrocode to predict onset of cavitation and pressure spikes during cavity collapse were in good agreement with the tests. The numerical simulations and experiments indicate that skull deformation is a significant factor causing cavitation. These results suggest that cavitation may be a damage mechanism contributing to TBI that requires future study.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.