• Journal of neurotrauma · Aug 2012

    Acute molecular perturbation of inducible nitric oxide synthase with an antisense approach enhances neuronal preservation and functional recovery after contusive spinal cord injury.

    • W Dalton Dietrich, Dominic M Maggio, Katina Chatzipanteli, Neil Masters, Samik P Patel, and Damien D Pearse.
    • The Miami Project to Cure Paralysis, The Neuroscience Program, The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.
    • J. Neurotrauma. 2012 Aug 10;29(12):2244-9.

    AbstractInducible nitric oxide synthase (iNOS) is a key mediator of inflammation and oxidative stress produced during pathological conditions, including neurodegenerative diseases and central nervous system (CNS) injury. iNOS is responsible for the formation of high levels of nitric oxide (NO). The production of highly reactive and cytotoxic NO species, such as peroxynitrite, plays an important role in secondary tissue damage. We have previously demonstrated that acute administration of iNOS antisense oligonucleotides (ASOs) 3 h after moderate contusive spinal cord injury (SCI) potently inhibits iNOS-mediated increases in NO levels, leading to reduced blood-spinal cord barrier permeability, decreased neutrophil accumulation, and less neuronal cell death. In the current study we investigated if iNOS ASOs could also provide long-term (10-week) histological and behavioral improvements after moderate thoracic T8 contusive SCI. Adult rats were randomly assigned to three groups (n=10/group): SCI alone, SCI and mixed base control oligonucleotides (MBOs), or SCI and iNOS ASOs (200 nM). Oligonucleotides were administered by spinal superfusion 3 h after injury. Behavioral analysis (Basso-Beattie-Bresnahan [BBB] score and subscore) was employed weekly for 10 weeks post-SCI. Although animals treated with iNOS ASOs demonstrated no significant differences in BBB scores compared to controls, subscore analysis revealed a significant improvement in foot positioning, trunk stability, and tail clearance. Histologically, while no gross improvement in preserved white and gray matter was observed, greater numbers of surviving neurons were present adjacent to the lesion site in iNOS ASO-treated animals than controls. These results support the effectiveness of targeting iNOS acutely as a therapeutic approach after SCI.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.