• BJU international · Oct 2015

    Simulation-based training for prostate surgery.

    • Raheej Khan, Abdullatif Aydin, Khan Muhammad Shamim MS MRC Centre for Transplantation, King's College London, Department of Urology, Guy's Hospital, King's Health Partners, London, UK., Prokar Dasgupta, and Kamran Ahmed.
    • MRC Centre for Transplantation, King's College London, Department of Urology, Guy's Hospital, King's Health Partners, London, UK.
    • BJU Int. 2015 Oct 1; 116 (4): 665-74.

    ObjectivesTo identify and review the currently available simulators for prostate surgery and to explore the evidence supporting their validity for training purposes.Materials And MethodsA review of the literature between 1999 and 2014 was performed. The search terms included a combination of urology, prostate surgery, robotic prostatectomy, laparoscopic prostatectomy, transurethral resection of the prostate (TURP), simulation, virtual reality, animal model, human cadavers, training, assessment, technical skills, validation and learning curves. Furthermore, relevant abstracts from the American Urological Association, European Association of Urology, British Association of Urological Surgeons and World Congress of Endourology meetings, between 1999 and 2013, were included. Only studies related to prostate surgery simulators were included; studies regarding other urological simulators were excluded.ResultsA total of 22 studies that carried out a validation study were identified. Five validated models and/or simulators were identified for TURP, one for photoselective vaporisation of the prostate, two for holmium enucleation of the prostate, three for laparoscopic radical prostatectomy (LRP) and four for robot-assisted surgery. Of the TURP simulators, all five have demonstrated content validity, three face validity and four construct validity. The GreenLight laser simulator has demonstrated face, content and construct validities. The Kansai HoLEP Simulator has demonstrated face and content validity whilst the UroSim HoLEP Simulator has demonstrated face, content and construct validity. All three animal models for LRP have been shown to have construct validity whilst the chicken skin model was also content valid. Only two robotic simulators were identified with relevance to robot-assisted laparoscopic prostatectomy, both of which demonstrated construct validity.ConclusionsA wide range of different simulators are available for prostate surgery, including synthetic bench models, virtual-reality platforms, animal models, human cadavers, distributed simulation and advanced training programmes and modules. The currently validated simulators can be used by healthcare organisations to provide supplementary training sessions for trainee surgeons. Further research should be conducted to validate simulated environments, to determine which simulators have greater efficacy than others and to assess the cost-effectiveness of the simulators and the transferability of skills learnt. With surgeons investigating new possibilities for easily reproducible and valid methods of training, simulation offers great scope for implementation alongside traditional methods of training.© 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…