• ASAIO J. · Sep 2010

    Hemodynamic responses to continuous versus pulsatile mechanical unloading of the failing left ventricle.

    • Carlo R Bartoli, Guruprasad A Giridharan, Kenneth N Litwak, Michael Sobieski, Sumanth D Prabhu, Mark S Slaughter, and Steven C Koenig.
    • University of Louisville School of Medicine, Kentucky, USA.
    • ASAIO J. 2010 Sep 1;56(5):410-6.

    AbstractDebate exists regarding the merits and limitations of continuous versus pulsatile flow mechanical circulatory support. To characterize the hemodynamic differences between each mode of support, we investigated the acute effects of continuous versus pulsatile unloading of the failing left ventricle in a bovine model. Heart failure was induced in male calves (n = 14). During an acute study, animals were instrumented through thoracotomy for hemodynamic measurement. A continuous flow (n = 8) and/or pulsatile flow (n = 8) left ventricular assist device (LVAD) was implanted and studied during maximum support ( approximately 5 L/min) and moderate support ( approximately 2-3 L/min) modes. Pulse pressure (PP), surplus hemodynamic energy (SHE), and (energy equivalent pressure [EEP]/mean aortic pressure (MAP) - 1) x 100% were derived to characterize hemodynamic energy profiles during the different support modes. Standard hemodynamic parameters of cardiac performance were also derived. Data were analyzed by repeated measures one-way analysis of variance within groups and unpaired Student's t-tests across groups. During maximum and moderate continuous unloading, PP, SHE, and (EEP/MAP - 1) x 100% were significantly decreased compared with baseline and compared with pulsatile unloading. As a result, continuous unloading significantly altered left ventricular peak systolic pressure, aortic systolic and diastolic pressure, +/-dP/dt, and rate x pressure product, whereas pulsatile unloading preserved a normal profile of physiologic values. As continuous unloading increased, the pressure-volume relationship collapsed, and the aortic valve remained closed. In contrast, as pulsatile unloading increased, a comparable decrease in left ventricular volumes was noted. However, a normal range of left ventricular pressures was preserved. Continuous unloading deranged the physiologic profile of myocardial and vascular hemodynamic energy utilization, whereas pulsatile unloading preserved more normal physiologic values. These findings may have important implications for chronic LVAD therapy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.