• Arthritis and rheumatism · Mar 2011

    Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension.

    • Eileen Hsu, Haiwen Shi, Rick M Jordan, James Lyons-Weiler, Joseph M Pilewski, and Carol A Feghali-Bostwick.
    • University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
    • Arthritis Rheum. 2011 Mar 1;63(3):783-94.

    ObjectivePulmonary complications, including pulmonary fibrosis (PF) and pulmonary arterial hypertension (PAH), are the leading cause of mortality in patients with systemic sclerosis (SSc). The aim of this study was to compare the molecular fingerprint of lung tissue and matching primary fibroblasts from patients with SSc with that of lung tissue and fibroblasts from normal donors, patients with idiopathic pulmonary fibrosis (IPF), and patients with idiopathic pulmonary arterial hypertension (IPAH).MethodsLung tissue samples were obtained from 33 patients with SSc who underwent lung transplantation. Tissues and cells from a subgroup of SSc patients with predominantly PF or PAH were compared to those from normal donors, patients with IPF, and patients with IPAH. Microarray data were analyzed using efficiency analysis for determination of the optimal data-processing methods. Real-time polymerase chain reaction and immunohistochemistry were used to confirm differential levels of messenger RNA and protein, respectively.ResultsConsensus efficiency analysis identified 242 and 335 genes that were differentially expressed in lungs and primary fibroblasts, respectively. SSc-PF and IPF lungs shared enriched functional groups in genes implicated in fibrosis, insulin-like growth factor signaling, and caveolin-mediated endocytosis. Gene functional groups shared by SSc-PAH and IPAH lungs included those involved in antigen presentation, chemokine activity, and interleukin-17 signaling.ConclusionUsing microarray analysis on carefully phenotyped SSc and comparator lung tissues, we demonstrated distinct molecular profiles in tissues and fibroblasts from patients with SSc-associated lung disease compared to idiopathic forms of lung disease. Unique molecular signatures were generated that are disease specific (SSc) and phenotype specific (PF versus PAH). These signatures provide new insights into the pathogenesis and potential therapeutic targets of SSc-related lung disease.Copyright © 2011 by the American College of Rheumatology.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.