-
Am. J. Physiol. Heart Circ. Physiol. · Apr 2010
Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension.
- Revathi Rajkumar, Kazuhisa Konishi, Thomas J Richards, David C Ishizawar, Andrew C Wiechert, Naftali Kaminski, and Ferhaan Ahmad.
- Cardiovascular Institute, Univ. of Pittsburgh, PA 15213-2582, USA.
- Am. J. Physiol. Heart Circ. Physiol. 2010 Apr 1;298(4):H1235-48.
AbstractIdiopathic pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by pulmonary arteriolar remodeling. This investigation aimed to identify genes involved specifically in the pathogenesis of PAH and not other forms of pulmonary hypertension (PH). Using genomewide microarray analysis, we generated the largest data set to date of RNA expression profiles from lung tissue specimens from 1) 18 PAH subjects and 2) 8 subjects with PH secondary to idiopathic pulmonary fibrosis (IPF) and 3) 13 normal subjects. A molecular signature of 4,734 genes discriminated among these three cohorts. We identified significant novel biological changes that were likely to contribute to the pathogenesis of PAH, including regulation of actin-based motility, protein ubiquitination, and cAMP, transforming growth factor-beta, MAPK, estrogen receptor, nitric oxide, and PDGF signaling. Bone morphogenic protein receptor type II expression was downregulated, even in subjects without a mutation in this gene. Women with PAH had higher expression levels of estrogen receptor 1 than normal women. Real-time quantitative PCR confirmed differential expression of the following genes in PAH relative to both normal controls and PH secondary to IPF: a disintegrin-like and metalloprotease with thrombospondin type 1 motif 9, cell adhesion molecule with homology to L1CAM, cytochrome b(558) and beta-polypeptide, coagulation factor II receptor-like 3, A-myb myeloblastosis viral oncogene homolog 1, nuclear receptor coactivator 2, purinergic receptor P2Y, platelet factor 4, phospholamban, and tropomodulin 3. This study shows that PAH and PH secondary to IPF are characterized by distinct gene expression signatures, implying distinct pathophysiological mechanisms.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.