-
- N von Rosenstiel, I von Rosenstiel, and D Adam.
- University Children's Hospital, Munich, Germany.
- Paediatr Drugs. 2001 Jan 1;3(1):9-27.
AbstractSepsis and septic shock constitute an important cause of morbidity and mortality in critically ill children. Thus, the systemic response to infection and its management remains a major challenge in clinical medicine. Apart from antibiotic administration, the majority of available therapies are limited to supportive strategies, although considerable efforts are being undertaken to devise innovative approaches that modulate host inflammatory responses. In suspected sepsis, 2 or 3 days' empiric antibiotic therapy should begin immediately after cultures have been obtained without awaiting results. Antibiotics should be re-evaluated when the results of the cultures and susceptibility tests are available. The initial antibiotic (combination) is determined by the likely causative agent, susceptibility patterns within a specific institution, CNS penetration, toxicity, and the patient's hepatic and renal function. The likely offending micro-organism in turn depends primarily on the patient's age, coexistence of any premorbid condition leading to impaired immune response, and the presenting signs and symptoms. Close attention to cardiovascular, respiratory, fluid and electrolyte, haematological, renal and metabolic/nutritional support is essential to optimise outcome. Fluid resuscitation is of utmost importance to overcome hypovolaemia on the basis of a diffuse capillary leak. Monitoring and normalisation of the heart rate is essential. In case of nonresponse to fluid resuscitation, inotropic and vasoactive agents are commonly used to increase cardiac output, maintain adequate blood pressure and enhance oxygen delivery to the tissue. Because respiratory distress syndrome is seen in about 40% of critically ill children with septic shock, increased inspired oxygen is essential. To provide optimal relief from respiratory muscle fatigue and facilitate the provision of positive airway pressure, early intubation and mechanical ventilation should be considered. Renal support is essential to avoid prolonged renal shutdown in hypoperfusion states. Haematological support comprises replacement therapy of clotting factors to overcome disseminated intravascular coagulation. Metabolic support may include glucose support, extraction of ammonia from the body and recognition of liver dysfunction. Nutritional support may modify the inflammatory host response, and early enteral feeding can improve outcome in critical illness. To date, glucocorticoid and non-glucocorticoid anti-inflammatory agents have not shown significant benefit in septic patients.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.