• Experimental neurology · Jul 1998

    Chronic effects of traumatic brain injury on hippocampal vesicular acetylcholine transporter and M2 muscarinic receptor protein in rats.

    • J R Ciallella, H Q Yan, X Ma, B M Wolfson, D W Marion, S T DeKosky, and C E Dixon.
    • Brain Trauma Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, 15260, USA.
    • Exp. Neurol. 1998 Jul 1;152(1):11-9.

    AbstractExperimental traumatic brain injury (TBI) produces cholinergic neurotransmission deficits that may contribute to chronic spatial memory deficits. Cholinergic neurotransmission deficits may be due to presynaptic alterations in the storage and release of acetylcholine (ACh) or from changes in the receptors for ACh. The vesicular ACh transporter (VAChT) mediates accumulation of ACh into secretory vesicles, and M2 receptors can modulate cholinergic neurotransmission via a presynaptic inhibitory feedback mechanism. We examined the effects of controlled cortical impact (CCI) injury on hippocampal VAChT and M2 muscarinic subtype receptor protein levels at four time points: 1 day, 1 week, 2 weeks, and 4 weeks following injury. Rats were anesthetized and surgically prepared for controlled cortical impact injury (4 m/s, 2.5- to 2.9-mm depth) and sham surgery. Animals were sacrificed and coronal sections (35 micro(m) thick) were cut through the dorsal hippocampus for VAChT and M2 immunohistochemistry. Semiquantitative measurements of VAChT and M2 protein in hippocampal homogenates from injured and sham rats were assessed using Western blot analysis. Immunohistochemistry showed no obvious changes in VAChT and M2 immunoreactivity at 1 day and 1 week postinjury. At 2 and 4 weeks postinjury, an increase in hippocampal VAChT protein and a corresponding loss of hippocampal M2 protein was observed compared to sham controls. Consistent with these results, Western blot analyses at 4 weeks postinjury demonstrated a 40-50% increase in VAChT and a 25-30% decrease in M2. These changes may represent a compensatory response of cholinergic neurons to increase the efficiency of ACh neurotransmission chronically after TBI, by upregulating the storage capacity and subsequent release of ACh and downregulating presynaptic inhibitory receptors.Copyright 1998 Academic Press.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.