• Critical care medicine · Oct 1994

    Effect of baseline lung compliance on the subsequent response to positive end-expiratory pressure in ventilated piglets with normal lungs.

    • T G Mundie, D Easa, K C Finn, E L Stevens, G Hashiro, and V Balaraman.
    • Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI.
    • Crit. Care Med. 1994 Oct 1;22(10):1631-8.

    ObjectiveTo determine the pulmonary function and hemodynamic effects of incremental positive end-expiratory pressure in two groups of normal ventilated newborn piglets with different baseline dynamic lung compliance.DesignProspective, controlled, intervention study.SettingAnimal laboratory.InterventionsOne group of piglets (inflation group) was prepared with 3 cm H2O (0.29 kPa) positive end-expiratory pressure and a maximal lung inflation to increase baseline lung compliance as compared with the other group (no-inflation group), prepared by 3 hrs of ventilation at zero end-expiratory pressure. Both groups were then subjected to a sequence of incremental positive end-expiratory pressures from 0 to 12 cm H2O (0 to 1.18 kPa) in 2-cm increments for 15-min periods at each level followed by a 60-min recovery period at zero end-expiratory pressure.Measurements And Main ResultsPulmonary function, hemodynamic and blood gas data were collected at each positive end-expiratory pressure value and at 15-min intervals during recovery. Baseline dynamic lung compliance was 5.2 +/- 0.3 mL/cm H2O (53.04 +/- 3.06 mL/kPa) in the inflation group and 2.5 +/- 0.1 mL/cm H2O (25.5 +/- 1.02 mL/kPa) in the no-inflation group. No differences were found in any other pulmonary function, hemodynamic or blood gas value at baseline. Incremental positive end-expiratory pressure resulted in a decrease in dynamic lung compliance and an increase in end-expiratory lung volume in both groups of piglets; dynamic lung compliance was greater in the inflation group at all times. No differences were found in end-expiratory lung volume between groups. Hemodynamic changes in both groups of piglets included: decreased cardiac output and increased pulmonary vascular resistance and systemic vascular resistance. The changes in cardiac output (-23% vs. -32%), pulmonary vascular resistance (+53% vs. +95%), and systemic vascular resistance (17% vs. 51%) were less in the inflation group as compared with the no-inflation group.ConclusionsBaseline dynamic lung compliance is an important determinant of the subsequent effect of positive end-expiratory pressure on pulmonary function and hemodynamics in the ventilated piglet with normal lungs.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…