• Brain research · Jul 2003

    Comparative Study

    Sodium channel inhibition by anandamide and synthetic cannabimimetics in brain.

    • R A Nicholson, C Liao, J Zheng, L S David, L Coyne, A C Errington, G Singh, and G Lees.
    • Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6. nicholso@sfu.ca
    • Brain Res. 2003 Jul 18;978(1-2):194-204.

    AbstractAnandamide is a prominent member of the endocannabinoids, a group of diffusible lipid molecules which influences neuronal excitability. In this context, endocannabinoids are known to modulate certain presynaptic Ca(2+) and K(+) channels, either through cannabinoid (CB1) receptor stimulation and second messenger pathway activation or by direct action. We investigated the susceptibility of voltage-sensitive sodium channels to anandamide and other cannibimimetics using both biochemical and electrophysiological approaches. Here we report that anandamide, AM 404 and WIN 55,212-2 inhibit veratridine-dependent depolarization of synaptoneurosomes (IC(50)s, respectively 21.8, 9.3 and 21.1 microM) and veratridine-dependent release of L-glutamic acid and GABA from purified synaptosomes [IC(50)s: 5.1 microM (L-glu) and 16.5 microM (GABA) for anandamide; 1.6 microM (L-glu) and 3.3 microM (GABA) for AM 404, and 12.2 (L-glu) and 14.4 microM (GABA) for WIN 55,212-2]. The binding of [3H]batrachotoxinin A 20-alpha-benzoate to voltage-sensitive sodium channels was also inhibited by low to mid micromolar concentrations of anandamide, AM 404 and WIN 55,212-2. In addition, anandamide (10 microM), AM 404 (10 microM) and WIN 55,212-2 (1 microM) were found to markedly block TTX-sensitive sustained repetitive firing in cortical neurones without altering primary spikes, consistent with a state-dependent mechanism. None of the inhibitory effects we demonstrate on voltage-sensitive sodium channels are attenuated by the potent CB1 antagonist AM 251 (1-2 microM). Anandamide's action is reversible and its effects are enhanced by fatty acid amidohydrolase inhibition. We propose that voltage-sensitive sodium channels may participate in a novel signaling pathway involving anandamide. This mechanism has potential to depress synaptic transmission in brain by damping neuronal capacity to support action potentials and reducing evoked release of both excitatory and inhibitory transmitters.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…