-
Clinical Trial
The respiratory change in preejection period: a new method to predict fluid responsiveness.
- Karim Bendjelid, Peter M Suter, and Jacques A Romand.
- Division of Surgical Intensive Care, Geneva University Hospital, CH-1211 Geneva 14 Switzerland. karim.bendjelid@hcuge.ch
- J. Appl. Physiol. 2004 Jan 1;96(1):337-42.
AbstractThe accuracy and clinical utility of preload indexes as bedside indicators of fluid responsiveness in patients after cardiac surgery is controversial. This study evaluates whether respiratory changes (Delta) in the preejection period (PEP; DeltaPEP) predict fluid responsiveness in mechanically ventilated patients. Sixteen postcoronary artery bypass surgery patients, deeply sedated under mechanical ventilation, were enrolled. PEP was defined as the time interval between the beginning of the Q wave on the electrocardiogram and the upstroke of the radial arterial pressure. DeltaPEP (%) was defined as the difference between expiratory and inspiratory PEP measured over one respiratory cycle. We also measured cardiac output, stroke volume index, right atrial pressure, pulmonary arterial occlusion pressure, respiratory change in pulse pressure, systolic pressure variation, and the Deltadown component of SPV. Data were measured without positive end-expiratory pressure (PEEP) and after application of a PEEP of 10 cmH2O (PEEP10). When PEEP10 induced a decrease of >15% in mean arterial pressure value, then measurements were re-performed before and after volume expansion. Volume loading was done in eight patients. Right atrial pressure and pulmonary arterial occlusion pressure before volume expansion did not correlate with the change in stroke volume index after the fluid challenge. Systolic pressure variation, DeltaPEP, Deltadown, and change in pulse pressure before volume expansion correlated with stroke volume index change after fluid challenge (r2 = 0.52, 0.57, 0.68, and 0.83, respectively). In deeply sedated, mechanically ventilated patients after cardiac surgery, DeltaPEP, a new method, can be used to predict fluid responsiveness and hemodynamic response to PEEP10.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.