-
- Dieter Mesotten and Greet Van den Berghe.
- Department of Intensive Care Medicine, University Hospital Gasthuisberg, Catholic University of Leuven, Leuven, Belgium.
- Drugs. 2003 Jan 1;63(7):625-36.
AbstractStress of critical illness is often accompanied by hyperglycaemia, whether or not the patient has a history of diabetes mellitus. This has been considered to be part of the adaptive metabolic response to stress. The level of hyperglycaemia in patients with acute myocardial infarction (MI) or stroke upon admission to the hospital has been related to the risk of adverse outcome. However, until recently, there was no evidence of a causal relationship and thus stress-induced hyperglycaemia was only treated with exogenous insulin when it exceeded 12 mmol/L (220 mg/dL). In patients with known diabetes, even higher levels were often tolerated. Recently, new data became available in support of another approach. In this review, we focus on the new evidence and the clinical aspects of managing hyperglycaemia with insulin in critically ill patients, drawing a parallel with diabetes management. Particularly, the 'Diabetes and Insulin-Glucose infusion in Acute Myocardial Infarction (DIGAMI) study' and the 'insulin in intensive care study' have provided novel insights. The DIGAMI study showed that in patients with diabetes, controlling blood glucose levels below 12 mmol/L for 3 months after acute MI improves long-term outcome. In the recent study of predominantly surgical intensive care patients, the majority of whom did not previously have diabetes, it was shown that an even tighter control of blood glucose with exogenous insulin, aiming for normoglycaemia, dramatically improved outcome. Indeed, in this large prospective, randomised, controlled study, 1548 intensive care patients had been randomly allocated to either the conventional approach, with insulin infusion started only when blood glucose levels exceeded 12 mmol/L, or intensive insulin therapy, with insulin infused to maintain blood glucose at a level of 4.5-6.1 mmol/L (80-110 mg/dL). Intensive insulin therapy reduced intensive care mortality by more than 40% and also decreased a number of morbidity factors including acute renal failure, polyneuropathy, ventilator-dependency and septicaemia. Future studies will be needed to further unravel the mechanisms that explain the beneficial effects of this simple and cost-saving intervention. Although available evidence supports implementation of intensive insulin therapy in surgical intensive care, the benefit for other patient populations, such as patients on medical intensive care units or hospitalised patients who do not require intensive care but who do present with stress-induced hyperglycaemia, remains to be investigated.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.