• J. Neurosci. · Nov 2006

    Comparative Study

    Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog.

    • Guo-Dong Li, David C Chiara, Gregory W Sawyer, S Shaukat Husain, Richard W Olsen, and Jonathan B Cohen.
    • Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA.
    • J. Neurosci. 2006 Nov 8;26(45):11599-605.

    AbstractGeneral anesthetics, including etomidate, act by binding to and enhancing the function of GABA type A receptors (GABA(A)Rs), which mediate inhibitory neurotransmission in the brain. Here, we used a radiolabeled, photoreactive etomidate analog ([(3)H]azietomidate), which retains anesthetic potency in vivo and enhances GABA(A)R function in vitro, to identify directly, for the first time, amino acids that contribute to a GABA(A)R anesthetic binding site. For GABA(A)Rs purified by affinity chromatography from detergent extracts of bovine cortex, [(3)H]azietomidate photoincorporation was increased by GABA and inhibited by etomidate in a concentration-dependent manner (IC(50) = 30 microm). Protein microsequencing of fragments isolated from proteolytic digests established photolabeling of two residues: one within the alphaM1 transmembrane helix at alpha1Met-236 (and/or the homologous methionines in alpha2,3,5), not previously implicated in etomidate function, and one within the betaM3 transmembrane helix at beta3Met-286 (and/or the homologous methionines in beta1,2), an etomidate sensitivity determinant. The pharmacological specificity of labeling indicates that these methionines contribute to a single binding pocket for etomidate located in the transmembrane domain at the interface between beta and alpha subunits, in what is predicted by structural models based on homology with the nicotinic acetylcholine receptor to be a water-filled pocket approximately 50 A below the GABA binding site. The localization of the etomidate binding site to an intersubunit, not an intrasubunit, binding pocket is a novel conclusion that suggests more generally that the localization of drug binding sites to subunit interfaces may be a feature not only for GABA and benzodiazepines but also for etomidate and other intravenous and volatile anesthetics.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.