-
- N Tanaka, H S An, T H Lim, A Fujiwara, C H Jeon, and V M Haughton.
- Rush-Presbyterian-St. Luke's Medical Center, 1653 West Congress Parkway, Chicago, IL 60612-3833, USA.
- Spine J. 2001 Jan 1;1(1):47-56.
Background ContextA relationship between degenerative changes of the intervertebral disc and biomechanical functions of the lumbar spine has been suggested. However, the exact relationship between the grade of disc degeneration and the flexibility of the motion segment is not known.PurposeTo investigate the relationship between degenerative grades of the intervertebral disc and three-dimensional (3-D) biomechanical characteristics of the motion segment under multidirectional loading conditions.Study Design/SettingA biomechanical and imaging study of human cadaveric spinal motion segments.MethodsOne hundred fourteen lumbar motion segments from T12-L1 to L5-S1 taken from 47 fresh cadaver spines (average age at death, 68 years; range, 39 to 87 years) were used in this study. The severity of degeneration (grades I to V according to Thomson's system) was determined using magnetic resonance (MR) images and cryomicrotome sections. Pure unconstrained moments with dead weights were applied to the motion segments in six load steps. The directions of loading included flexion, extension, right and left axial rotation, and right and left lateral bending.ResultsWhen the MR images were graded, 2 segments had grade I disc degeneration; 45, grade II; 20, grade III; 26, grade IV; and 21, grade V. When the cryomicrotome sections were graded, 14 segments had grade I disc degeneration; 31, grade II; 22, grade III; 26, grade IV; and 21, grade V. Segments from the upper lumbar levels (T12-L1 to L3-4) tended to have greater rotational movement in flexion, extension, and axial rotation with disc degeneration up to grade IV, whereas the motion decreased when the disc degenerated to grade V. In the lower lumbar spine at L4-5 and L5-S1, motion in axial rotation and lateral bending was increased in grade III.ConclusionsThese results suggest that kinematic properties of the lumbar spine are related to disc degeneration. Greater motion generally was found with disc degeneration, particularly in grades III and IV, in which radial tears of the annulus fibrosus are found. Disc space collapse and osteophyte formation as found in grade V resulted in stabilization of the motion segments.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.