• Chest · Sep 1997

    Comparative Study

    Positional vs nonpositional obstructive sleep apnea patients: anthropomorphic, nocturnal polysomnographic, and multiple sleep latency test data.

    • A Oksenberg, D S Silverberg, E Arons, and H Radwan.
    • Sleep Disorders Unit, Loewenstein Hospital Rehabilitation Center, Raanana, Israel.
    • Chest. 1997 Sep 1;112(3):629-39.

    Study ObjectivesTo compare anthropomorphic, nocturnal polysomnographic (PSG), and multiple sleep latency test (MSLT) data between positional (PP) and nonpositional (NPP) obstructive sleep apnea (OSA) patients.DesignThis is a retrospective analysis of anthropomorphic, PSG, and MSLT data of a large group of OSA patients who underwent a complete PSG evaluation in our sleep disorders unit. The patients were divided in two groups: the PP group, those patients who had a supine respiratory disturbance index (RDI) that was at least two times higher than the lateral RDI, and the NPP group, those patients in whom the RDI in the supine position was less than twice that in the lateral position.SubjectsFrom a group of 666 consecutive OSA patients whose conditions were diagnosed in our unit from September 1990 to February 1995, 574 patients met the following criteria and were included in the study: RDI > 10; age > 20 years, and body mass index (BMI) > 20.ResultsOf all 574 patients, 55.9% were found to be positional. No differences in height were observed but weight and BMI were significantly higher in the NPP group, these patients being on the average 6.5 kg heavier than those in the PP group. The PP group was, on average, 2 years younger than the NPP group. Nocturnal sleep quality was better preserved in the PP group. In this group, sleep efficiency and the percentages of deep sleep (stages 3 and 4) were significantly higher while the percentages of light sleep (stages 1 and 2) were significantly lower than in the NPP group. No differences for rapid eye movement (REM) sleep were found. In addition, wakefulness after sleep onset and the number of short arousals (< 15 s) were significantly lower in the PP group. Apnea index and total RDI were significantly higher and the minimal arterial oxygen saturation in REM and non-REM sleep was significantly lower in the NPP. No differences in periodic limb movements data were found between the two groups. The average MSLT was significantly shorter in the NPP group. Univariate and multivariate stepwise logistic regression analysis showed that the most dominant variable that correlates with positional dependency in OSA patients is RDI, followed by BMI which also adds a significant contribution to the prediction of positional dependency. Age, although significant, adds only a minor improvement to the prediction of this positional dependency phenomenon. A severe, obese, and older OSA patient is significantly less likely to be positional than a mild-moderate, thin, and young OSA patient. In four obese OSA patients who lost weight, a much more pronounced reduction was seen in the lateral RDI than in the supine RDI, and three of these cases who were previously NPP became PP.ConclusionsIn a large population of OSA patients, most were found to have at least twice as many apneas/hypopneas in the supine than in the lateral position. These so-called "positional patients" are on the average thinner and younger than "nonpositional patients." They had fewer and less severe breathing abnormalities than the NPP group. Consequently their nocturnal sleep quality was better preserved and, according to MSLT data, they were less sleepy during daytime hours. RDI was the most dominant factor that could predict the positional dependency followed by BMI and age. RDI showed a threshold effect, the prevalence of PP in those with severe RDI (RDI > or = 40) was significantly lower than in those OSA patients with mild-moderate RDI. BMI showed a major significant inverse relationship with positional dependency, while age had only a minor although significant inverse relationship with it. Body position during sleep has a profound effect on the frequency and severity of breathing abnormalities in OSA patients.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…