• Brain research · Aug 2014

    Transcranial direct current stimulation of the premotor cortex: effects on hand dexterity.

    • Elena Pavlova, Min-Fang Kuo, Michael A Nitsche, and Jörgen Borg.
    • Department of Clinical Sciences, Rehabilitation medicine, Karolinska Institute, Danderyd Hospital, entrée 39, floor 3, 18288 Stockholm, Sweden. Electronic address: elena.pavlova@ki.se.
    • Brain Res. 2014 Aug 12;1576:52-62.

    UnlabelledPremotor cortex activity is associated with complex motor performance and motor learning and offers a potential target to improve dexterity by transcranial direct current stimulation (tDCS). We explored the effects of tDCS of premotor cortex on performance of a Strength-Dexterity test in healthy subjects.MethodsDuring the test a slender spring held between thumb and index finger should be compressed as much as possible without buckling. Finger forces assessed in the test provided a measure of dexterity. First, task performance was tested in 12 persons during anodal tDCS to the primary motor cortex (M1) contralateral to the performing hand, and sham stimulation. Another 12 persons participated in five sessions of anodal and cathodal tDCS over the left and the right premotor cortex and sham stimulation.ResultstDCS over M1 as well as over the left, but not the right premotor cortex resulted in significant improvement of performance. Performance alterations correlated positively between left anodal and right cathodal tDCS and negatively between anodal tDCS of the two sides. Effective polarity for premotor stimulation to improve task performance differed between participants. Individuals who improved with anodal stimulation used lower finger force and experienced the test as more difficult compared to those who improved with cathodal stimulation.ConclusionsThis study demonstrates that tDCS over the left premotor cortex can improve performance of a dexterity demanding task. The effective polarity of stimulation depends on the task performance strategies. The study moreover shows a functional relevance of interactions between the left and right premotor cortex.Copyright © 2014 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.