• J Neurosurg Spine · Apr 2014

    Tissue-engineered intervertebral discs: MRI results and histology in the rodent spine.

    • Peter Grunert, Harry H Gebhard, Robby D Bowles, Andrew R James, Hollis G Potter, Michael Macielak, Katherine D Hudson, Marjan Alimi, Douglas J Ballon, Eric Aronowitz, Apostolos John Tsiouris, Lawrence J Bonassar, and Roger Härtl.
    • Department of Neurological Surgery, Weill Cornell Brain and Spine Institute, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York;
    • J Neurosurg Spine. 2014 Apr 1;20(4):443-51.

    ObjectTissue-engineered intervertebral discs (TE-IVDs) represent a new experimental approach for the treatment of degenerative disc disease. Compared with mechanical implants, TE-IVDs may better mimic the properties of native discs. The authors conducted a study to evaluate the outcome of TE-IVDs implanted into the rat-tail spine using radiological parameters and histology.MethodsTissue-engineered intervertebral discs consist of a distinct nucleus pulposus (NP) and anulus fibrosus (AF) that are engineered in vitro from sheep IVD chondrocytes. In 10 athymic rats a discectomy in the caudal spine was performed. The discs were replaced with TE-IVDs. Animals were kept alive for 8 months and were killed for histological evaluation. At 1, 5, and 8 months, MR images were obtained; T1-weighted sequences were used for disc height measurements, and T2-weighted sequences were used for morphological analysis. Quantitative T2 relaxation time analysis was used to assess the water content and T1ρ-relaxation time to assess the proteoglycan content of TE-IVDs.ResultsDisc height of the transplanted segments remained constant between 68% and 74% of healthy discs. Examination of TE-IVDs on MR images revealed morphology similar to that of native discs. T2-relaxation time did not differ between implanted and healthy discs, indicating similar water content of the NP tissue. The size of the NP decreased in TE-IVDs. Proteoglycan content in the NP was lower than it was in control discs. Ossification of the implanted segment was not observed. Histological examination revealed an AF consisting of an organized parallel-aligned fiber structure. The NP matrix appeared amorphous and contained cells that resembled chondrocytes.ConclusionsThe TE-IVDs remained viable over 8 months in vivo and maintained a structure similar to that of native discs. Tissue-engineered intervertebral discs should be explored further as an option for the potential treatment of degenerative disc disease.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…