• Anesthesiology · May 2012

    Electroencephalographic recovery, hypnotic emergence, and the effects of metabolite after continuous infusions of a rapidly metabolized etomidate analog in rats.

    • Ervin Pejo, Rile Ge, Natalie Banacos, Joseph F Cotten, S Shaukat Husain, and Douglas E Raines.
    • Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
    • Anesthesiology. 2012 May 1;116(5):1057-65.

    BackgroundMethoxycarbonyl etomidate is an ultrarapidly metabolized etomidate analog. It is metabolized to methoxycarbonyl etomidate carboxylic acid (MOC-ECA), which has a hypnotic potency that is 350-fold less than that of methoxycarbonyl etomidate. The authors explored the relationships between methoxycarbonyl etomidate infusion duration, recovery time, metabolite concentrations in blood and cerebrospinal fluid (CSF), and methoxycarbonyl etomidate metabolism in brain tissue and CSF to test the hypothesis that rapid metabolism of methoxycarbonyl etomidate may lead to sufficient accumulation of MOC-ECA in the brain to produce a pharmacologic effect.MethodsA closed-loop system with burst suppression ratio feedback was used to administer methoxycarbonyl etomidate infusions of varying durations to rats. After infusion, recovery of the electroencephalogram and righting reflexes were assessed. MOC-ECA concentrations were measured in blood and CSF during and after methoxycarbonyl etomidate infusion, and the in vitro half-life of methoxycarbonyl etomidate was determined in rat brain tissue and CSF.ResultsUpon termination of continuous methoxycarbonyl etomidate infusions, the burst suppression ratio recovered in a biexponential manner with fast and slow components having time constants that differed by more than 100-fold and amplitudes that varied inversely with infusion duration. MOC-ECA concentrations reached hypnotic concentrations in the CSF with prolonged methoxycarbonyl etomidate infusion and then decreased during a period of several hours after infusion termination. The metabolic half-life of methoxycarbonyl etomidate in brain tissue and CSF was 11 and 20 min, respectively.ConclusionIn rats, methoxycarbonyl etomidate metabolism is sufficiently fast to produce pharmacologically active MOC-ECA concentrations in the brain with prolonged methoxycarbonyl etomidate infusion.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.