• Glia · Jan 2002

    Comparative Study

    Differential regulation of glial cell line-derived neurotrophic factor (GDNF) mRNA expression during hypoxia and reoxygenation in astrocytes isolated from stroke-prone spontaneously hypertensive rats.

    • Kazuo Yamagata, Motoki Tagami, Katsumi Ikeda, Shigehisa Tsumagari, Yukio Yamori, and Yasuo Nara.
    • Division of Life Science, Graduate School of Integrated Science and Art, University of East Asia, Yamaguchi, Japan. yamagata@po.cc.toua-u.ac.jp
    • Glia. 2002 Jan 1;37(1):1-7.

    AbstractGlial cell line-derived neurotrophic factor (GDNF) plays several important roles in the survival and recovery of mature neurons during ischemia. We examined the possibility that the expression of GDNF mRNA and the release of GDNF protein are regulated differentially in cultured astrocytes from the stroke-prone spontaneously hypertensive rat (SHRSP) compared with those from Wistar Kyoto rats (WKY) during hypoxia and reoxygenation (H/R) and after exposure to glutamate and hydrogen peroxide (H(2)O(2)). The mRNA expression was quantitated by reverse transcription-polymerase chain reaction (RT-PCR) based on the fluorescent TaqMan methodology. A new instrument capable of measuring fluorescence in real-time was used to quantify gene amplification in astrocytes. GDNF protein was investigated by enzyme-linked immunosorbent assay (ELISA). GDNF mRNA expression and GDNF protein release at normoxia were greater in SHRSP than in WKY astrocytes. During H/R, however, the mRNA expression and protein release tended to be reduced in SHRSP compared with WKY. Glutamate and H(2)O(2) induced the expression of GDNF mRNA and the release of GDNF protein in both WKY and SHRSP in a dose-dependent manner. Levels of GDNF mRNA and protein in SHRSP were significantly lower than in WKY. These findings indicate that GDNF production in SHRSP astrocytes was low in response to H/R, glutamate, and H(2)O(2), compared with that observed in WKY. We conclude that the attenuated production of GDNF in astrocytes is involved in neuronal vulnerability in SHRSP during H/R, as GDNF production, which is stimulated by glutamate and H(2)O(2), is closely related to the protective effect against H/R-mediated neurotoxicity.Copyright 2002 Wiley-Liss, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.