• Annals of intensive care · Jan 2011

    The effect of red blood cell transfusion on tissue oxygenation and microcirculation in severe septic patients.

    • Farid Sadaka, Ravi Aggu-Sher, Katie Krause, Jacklyn O'Brien, Eric S Armbrecht, and Robert W Taylor.
    • St, John's Mercy Medical Center, St, Louis University, St, Louis, MO, USA. Farid.Sadaka@Mercy.Net.
    • Ann Intensive Care. 2011 Jan 1;1(1):46.

    BackgroundMicrocirculation plays a vital role in the development of multiple organ failure in severe sepsis. The effects of red blood cell (RBC) transfusions on these tissue oxygenation and microcirculation variables in early severe sepsis are not well defined.MethodsThis is a prospective, observational study of patients with severe sepsis requiring RBC transfusions of one to two units of non-leukoreduced RBCs for a hemoglobin < 7.0, or for a hemoglobin between 7.0 and 9.0 with lactic acidosis or central venous oxygen saturation < 70%. This study took place in a 54-bed, medical-surgical intensive care unit of a university-affiliated hospital. Thenar tissue oxygen saturation was measured by using a tissue spectrometer on 21 patients, and a vaso-occlusive test was performed before and 1 hour after transfusion. The sublingual microcirculation was assessed with a Sidestream Dark Field device concomitantly on 11 of them.ResultsRBC transfusion resulted in increase in hemoglobin (7.23 (± 0.87) to 8.75 (± 1.06) g/dl; p < 0.001). RBC transfusion did not globally affect near-infrared spectrometry (NIRS)-derived variables. However, percent change in muscle oxygen consumption was negatively correlated with baseline (r = - 0.679, p = 0.001). There was no statistically significant correlation between percent change in vascular reactivity and baseline (p = 0.275). There was a positive correlation between percent change in oxygen consumption and percent change in vascular reactivity (r = 0.442, p = 0.045). In the 11 patients, RBC transfusion did not globally affect NIRS-derived variables or SDF-derived variables. There was no statistically significant correlation between percent change in small vessel perfusion and baseline perfusion (r = -0.474, p = 0.141), between percent change in small vessel flow and baseline flow (r = -0.418, p = 0.201), or between percent change in small vessel perfusion and percent change in small vessel flow (r = 0.435, p = 0.182).ConclusionsIn a small sample population, muscle tissue oxygen consumption, microvascular reactivity and sublingual microcirculation were globally unaltered by RBC transfusion in severe septic patients. However, muscle oxygen consumption improved in patients with low baseline and deteriorated in patients with preserved baseline. Future research with larger samples is needed to further examine the association between RBC transfusion and outcomes of patients resuscitated early in severe sepsis, with an emphasis on elucidating the potential contribution of microvascular factors.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…