-
- Jiahui Wang, Feng Li, and Qiang Li.
- Department of Radiology, Duke University, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705, USA.
- Med Phys. 2009 Oct 1;36(10):4592-9.
PurposeAccurate segmentation of lungs with severe interstitial lung disease (ILD) in thoracic computed tomography (CT) is an important and difficult task in the development of computer-aided diagnosis (CAD) systems. Therefore, we developed in this study a texture analysis-based method for accurate segmentation of lungs with severe ILD in multidetector CT scans.MethodsOur database consisted of 76 CT scans, including 31 normal cases and 45 abnormal cases with moderate or severe ILD. The lungs in three selected slices for each CT scan were first manually delineated by a medical physicist, and then confirmed or revised by an expert chest radiologist, and they were used as the reference standard for lung segmentation. To segment the lungs, we first employed a CT value thresholding technique to obtain an initial lung estimate, including normal and mild ILD lung parenchyma. We then used texture-feature images derived from the co-occurrence matrix to further identify abnormal lung regions with severe ILD. Finally, we combined the identified abnormal lung regions with the initial lungs to generate the final lung segmentation result. The overlap rate, volume agreement, mean absolute distance (MAD), and maximum absolute distance (dmax) between the automatically segmented lungs and the reference lungs were employed to evaluate the performance of the segmentation method.ResultsOur segmentation method achieved a mean overlap rate of 96.7%, a mean volume agreement of 98.5%, a mean MAD of 0.84 mm, and a mean dmax of 10.84 mm for all the cases in our database; a mean overlap rate of 97.7%, a mean volume agreement of 99.0%, a mean MAD of 0.66 mm, and a mean dmax of 9.59 mm for the 31 normal cases; and a mean overlap rate of 96.1%, a mean volume agreement of 98.1%, a mean MAD of 0.96 mm, and a mean dmax of 11.71 mm for the 45 abnormal cases with ILD.ConclusionsOur lung segmentation method provided accurate segmentation results for abnormal CT scans with severe ILD and would be useful for developing CAD systems for quantification, detection, and diagnosis of ILD.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.