-
Journal of neurotrauma · Jun 2011
Comparative StudyDifferential effects of low versus high amounts of weight supported treadmill training in spinally transected rats.
- Ray D de Leon, Pamela A See, and Cheryl H T Chow.
- School of Kinesiology and Nutritional Science, California State University, Los Angeles, California 90032-8162, USA. rdeleon@calstatela.edu
- J. Neurotrauma. 2011 Jun 1;28(6):1021-33.
AbstractIntensive weight-supported treadmill training (WSTT) improves locomotor function following spinal cord injury. Because of a number of factors, undergoing intensive sessions of training may not be feasible. Whether reduced amounts of training are sufficient to enhance spinal plasticity to a level that is necessary for improving function is not known. The focus of the present study was to assess differences in recovery of locomotor function and spinal plasticity as a function of the amount of steps taken during WSTT in a rodent model of spinal cord injury. Rats were spinally transected at 5 days of age. When they reached 28 days of age, a robotic system was used to implement a weight-supported treadmill training program of either 100 or 1000 steps/training session daily for 4 weeks. Antibodies for brain-derived neurotrophic factor (BDNF), TrkB, and the pre-synaptic marker, synaptophysin, were used to examine the expression of these proteins in the ventral horn of the lumbar spinal cord. Rats that received weight-supported treadmill training performed better stepping relative to untrained rats, but only the rats that received 1000 steps/training session recovered locomotor function that resembled normal patterns. Only the rats that received 1000 steps/training session recovered normal levels of synaptophysin immunoreactivity around motor neurons. Weight-supported treadmill training consisting of either 100 or 1000 steps/training session increased BDNF immunoreactivity in the ventral horn of the lumbar spinal cord. TrkB expression in the ventral horn was not affected by spinal cord transection or weight-supported treadmill training. Synaptophysin expression, but not BDNF or TrkB expression was correlated with the recovery of stepping function. These findings suggested that a large amount of weight-supported treadmill training was necessary for restoring synaptic connections to motor neurons within the locomotor generating circuitry. Although a large amount of training was best for recovery, small amounts of training were associated with incremental gains in function and increased BDNF levels.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.