• J. Med. Internet Res. · Jan 2015

    Social media as a sensor of air quality and public response in China.

    • Shiliang Wang, Michael J Paul, and Mark Dredze.
    • Johns Hopkins University, Department of Computer Science, Baltimore, MD, United States.
    • J. Med. Internet Res. 2015 Jan 1;17(3):e22.

    BackgroundRecent studies have demonstrated the utility of social media data sources for a wide range of public health goals, including disease surveillance, mental health trends, and health perceptions and sentiment. Most such research has focused on English-language social media for the task of disease surveillance.ObjectiveWe investigated the value of Chinese social media for monitoring air quality trends and related public perceptions and response. The goal was to determine if this data is suitable for learning actionable information about pollution levels and public response.MethodsWe mined a collection of 93 million messages from Sina Weibo, China's largest microblogging service. We experimented with different filters to identify messages relevant to air quality, based on keyword matching and topic modeling. We evaluated the reliability of the data filters by comparing message volume per city to air particle pollution rates obtained from the Chinese government for 74 cities. Additionally, we performed a qualitative study of the content of pollution-related messages by coding a sample of 170 messages for relevance to air quality, and whether the message included details such as a reactive behavior or a health concern.ResultsThe volume of pollution-related messages is highly correlated with particle pollution levels, with Pearson correlation values up to .718 (n=74, P<.001). Our qualitative results found that 67.1% (114/170) of messages were relevant to air quality and of those, 78.9% (90/114) were a firsthand report. Of firsthand reports, 28% (32/90) indicated a reactive behavior and 19% (17/90) expressed a health concern. Additionally, 3 messages of 170 requested that action be taken to improve quality.ConclusionsWe have found quantitatively that message volume in Sina Weibo is indicative of true particle pollution levels, and we have found qualitatively that messages contain rich details including perceptions, behaviors, and self-reported health effects. Social media data can augment existing air pollution surveillance data, especially perception and health-related data that traditionally requires expensive surveys or interviews.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.