• J. Neurosci. · Apr 2014

    Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death.

    • Andrew D Greenhalgh and Samuel David.
    • Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada, H3G 1A4.
    • J. Neurosci. 2014 Apr 30;34(18):6316-22.

    AbstractMacrophages in the injured spinal cord arise from resident microglia and infiltrating, peripherally derived monocytes. It is still not clear if macrophages derived from these two populations differ in their roles after CNS injury. The aims of this study are to investigate the phagocytic response and clearance of damaged axons and tissue debris by these distinct subsets of macrophages and assess their viability after spinal cord injury (SCI). The lysozyme M EGFP-knockin mouse tags hematogenous macrophages, but not microglia. Using a combination of immunofluorescence, flow cytometry, and neuronal tracing techniques, we show that microglia contact damaged axons early (24 h) after SCI and are the main type of macrophage to contain phagocytic material at 3 d. Thereafter, infiltrating macrophages become the predominant cell in contact with degenerating axons and contain more phagocytic material, which in contrast to microglia, persists for up to 42 d. Furthermore, after phagocytosis of myelin in vitro, bone marrow-derived macrophages are much more susceptible to apoptotic and necrotic cell death than CNS microglia, which is mirrored in vivo with apoptotic TUNEL-positive cells of infiltrating macrophage origin. This work suggests that microglia play a major role in the early response to SCI, by phagocytosing damaged and degenerating tissue, processing phagocytic material efficiently, and remaining viable. Later, macrophages of peripheral origin contribute predominantly to phagocytosis but are less efficient at processing CNS debris, and their death, in situ, may contribute to the secondary damage after CNS injury.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.