• Cardiovascular research · Jul 2009

    Rapid cooling preserves the ischaemic myocardium against mitochondrial damage and left ventricular dysfunction.

    • Renaud Tissier, Nicolas Couvreur, Bijan Ghaleh, Patrick Bruneval, Fanny Lidouren, Didier Morin, Roland Zini, Alain Bize, Mourad Chenoune, Marie-France Belair, Chantal Mandet, Martine Douheret, Jean-Luc Dubois-Rande, James C Parker, Michael V Cohen, James M Downey, and Alain Berdeaux.
    • INSERM U955, Equipe 3, 94010 Créteil cedex, France.
    • Cardiovasc. Res. 2009 Jul 15;83(2):345-53.

    AimsWe investigated whether rapid cooling instituted by total liquid ventilation (TLV) improves cardiac and mitochondrial function in rabbits submitted to ischaemia-reperfusion.Methods And ResultsRabbits were chronically instrumented with a coronary artery occluder and myocardial ultrasonic crystals for assessment of segment length-shortening. Two weeks later they were re-anaesthetized and underwent either a normothermic 30-min coronary artery occlusion (CAO) (Control group, n = 7) or a comparable CAO with cooling initiated by a 10-min hypothermic TLV and maintained by a cold blanket placed on the skin. Cooling was initiated after 5 or 15 min of CAO (Hypo-TLV and Hypo-TLV(15') groups, n = 6 and 5, respectively). A last group underwent normothermic TLV during CAO (Normo-TLV group, n = 6). Wall motion was measured in the conscious state over three days of reperfusion before infarct size evaluation and histology. Additional experiments were done for myocardial sampling in anaesthetized rabbits for mitochondrial studies. The Hypo-TLV procedure induced a rapid decrease in myocardial temperature to 32-34 degrees C. Throughout reperfusion, segment length-shortening was significantly increased in Hypo-TLV and Hypo-TLV(15') vs. Control and Normo-TLV (15.1 +/- 3.3%, 16.4 +/- 2.3%, 1.8 +/- 0.6%, and 1.1 +/- 0.8% at 72 h, respectively). Infarct sizes were also considerably attenuated in Hypo-TLV and Hypo-TLV(15') vs. Control and Normo-TLV (4 +/- 1%, 11 +/- 5%, 39 +/- 2%, and 42 +/- 5% infarction of risk zones, respectively). Mitochondrial function in myocardial samples obtained at the end of ischaemia or after 10 min of reperfusion was improved by Hypo-TLV with respect to ADP-stimulated respiration and calcium-induced opening of mitochondrial permeability transition pores (mPTP). Calcium concentration opening mPTP was, e.g., increased at the end of ischaemia in the risk zone in Hypo-TLV vs. Control (157 +/- 12 vs. 86 +/- 12 microM). Histology and electron microscopy also revealed better preservation of lungs and of cardiomyocyte ultrastructure in Hypo-TLV when compared with Control.ConclusionInstitution of rapid cooling by TLV during ischaemia reduces infarct size as well as other sequelae of ischaemia, such as post-ischaemic contractile and mitochondrial dysfunction.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.