• Journal of neurotrauma · Apr 2012

    Upregulation of RyR2 in hypoxic/reperfusion injury.

    • Varun Kesherwani and Sandeep K Agrawal.
    • Section of Neurosurgery, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198-6250, USA.
    • J. Neurotrauma. 2012 Apr 10;29(6):1255-65.

    AbstractCalcium influx into cells is responsible for initiating the cell death in neuronal tissue after hypoxic injury. Changes in intracellular calcium with subsequent increased expression of ryanodine receptor 2 (RyR2) are hypothesized to cause cell death after hypoxic injury. In the present study we have examined the time-dependent changes of RyR2 expression in hypoxic/reperfusion injury of spinal cord dorsal column. In this study we used western blotting, real time PCR (RT-PCR) and immunohistochemistry to examine changes in protein and gene expression of RyR2 after spinal cord injury (SCI) in the rat. Quantitative immunoblotting showed increase in the expression of RyR2 at 4 h during hypoxic/reperfusion injury of dorsal column. Moreover, RT-PCR showed 36-fold increases in mRNA of RyR2 after 4 h of hypoxic injury of white matter. By double immunofluorescence staining, RyR2 was localized on axons and astrocytes in the white matter of the spinal cord. After treatment with KN-62; (inhibitor of CaMKII) and SP600125 (inhibitor of JNK), there is a significant reduction in the expression of RyR2, indicating the role of these molecules in RyR2 regulation. Further removal of extracellular calcium does not have significant effect on RyR2 expression and phosphorylation of CaMKII, which was further confirmed by treatment with intracellular Ca(++) chelator BAPTA-AM. Finally, bioassay with quantitative analysis showed that treatment with inhibitor significantly reduced the cellular oxidative stress suggesting RyR2 is responsible for increased cellular oxidative load. In summary, we provide evidence that RyR2 gene and protein expression in astrocyte and axons is markedly increased after hypoxic injury. Further CaMKII/JNK pathway upregulates RyR2 expression after hypoxic injury. Therefore we propose that inhibitors of CaMKII/JNK pathway would reduce the cellular oxidative load and thereby have a neuroprotective role.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.