-
Critical care medicine · Jul 2000
Biologically variable ventilation increases arterial oxygenation over that seen with positive end-expiratory pressure alone in a porcine model of acute respiratory distress syndrome.
- W A Mutch, S Harms, G R Lefevre, M R Graham, L G Girling, and S E Kowalski.
- Department of Anesthesia and Neuroanesthesia Research Laboratory, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
- Crit. Care Med. 2000 Jul 1;28(7):2457-64.
ObjectivesWe compared biologically variable ventilation (BVV) (as previously described) (1) with conventional control mode ventilation (CV) in a model of acute respiratory distress syndrome (ARDS) both at 10 cm H2O positive end-expiratory pressure.DesignRandomized, controlled, prospective study.SettingUniversity research laboratory.SubjectsFarm-raised 3- to 4-month-old swine.InterventionsOleic acid (OA) was infused at 0.2 mL/kg/hr with FIO2 = 0.5 and 5 cm H2O positive end-expiratory pressure until PaO2 was < or =60 mm Hg; then all animals were placed on an additional 5 cm H2O positive end-expiratory pressure for the next 4 hrs. Animals were assigned randomly to continue CV (n = 9) or to have CV computer controlled to deliver BVV (variable respiratory rate and tidal volume; n = 8). Hemodynamic, expired gas, airway pressure, and volume data were obtained at baseline (before OA), immediately after OA, and then at 60-min intervals for 4 hrs.Measurements And Main ResultsAt 4 hrs after OA injury, significantly higher PaO2 (213+/-17 vs. 123+/-47 mm Hg; mean+/-SD), lower shunt fraction (6%+/-1% vs. 18%+/-14%), and lower PaCO2 (50+/-8 vs. 65+/-11 mm Hg) were seen with BVV than with CV. Respiratory system compliance was greater by experiment completion with BVV (0.37+/-0.05 vs. 0.31+/-0.08 mL/cm H2O/kg). The improvements in oxygenation, CO2 elimination, and respiratory mechanics occurred without a significant increase in either mean airway pressure (14.3+/-0.9 vs. 14.9+/-1.1 cm H2O) or mean peak airway pressure (39.3+/-3.5 vs. 44.5+/-7.2 cm H2O) with BVV. The oxygen index increased five-fold with OA injury and decreased to significantly lower levels over time with BVV.ConclusionsIn this model of ARDS, BVV with 10 cm H2O positive end-expiratory pressure improved arterial oxygenation over and above that seen with CV with positive end-expiratory pressure alone. Proposed mechanisms for BVV efficacy are discussed.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.