• Oncology reports · Jan 2013

    Antiproliferative effect of the HSP90 inhibitor NVP-AUY922 is determined by the expression of PTEN in esophageal cancer.

    • Xiao-Hong Bao, Munenori Takaoka, Hui-Fang Hao, Takuya Fukazawa, Tomoki Yamatsuji, Kazufumi Sakurama, Nagio Takigawa, Motowo Nakajima, Toshiyoshi Fujiwara, and Yoshio Naomoto.
    • Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
    • Oncol. Rep. 2013 Jan 1;29(1):45-50.

    AbstractHeat shock protein 90 (HSP90), a molecular chaperone, has provoked great interest as a promising molecular target for cancer treatment, due to its involvement in regulating the conformation, stability and functions of key oncogenic proteins. At present, a variety of chemical compounds targeting HSP90 have been developed and have shown convincing anti-neoplastic activity in various preclinical tumor models. The aim of our study was to evaluate the antitumor effects of a novel HSP90 inhibitor, NVP-AUY922, in esophageal squamous cancer cells (ESCC). Four ESCC cell lines (TE-1, TE-4, TE-8, TE-10) were examined. NVP-AUY922 potently inhibited the proliferation of ESCC, particularly in PTEN-null TE-4 cells with a 2-3 times lower IC50 than the other three cell lines. Western blot analysis showed that PTEN-null TE-4 cells exhibited higher AKT and ERK activity, which contribute to cell proliferation and survival. NVP-AUY922 significantly suppressed the activity of AKT and ERK in TE-4 but not in PTEN-proficient TE-10 cells. Genetic modification experiments demonstrated that the sensitivity to NVP-AUY922 was decreased by exogenous transduction of PTEN in TE-4 and increased by silencing PTEN expression in intact PTEN-expressing TE-10, suggesting that the expression of PTEN may be associated with cell sensitivity in HSP90 inhibition. Furthermore, the enhanced activity of AKT in PTEN-silenced TE-10 was more easily suppressed by NVP-AUY922. Collectively, NVP-AUY922 exhibits a strong antiproliferative effect, revealing its potential as a novel therapeutic alternative to current ESCC treatment. The effect may be improved further by impeding PTEN expression.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.