• Crit Care · Jan 2008

    Comparative Study

    Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm.

    • Emmanuel Futier, Jean-Michel Constantin, Lydie Combaret, Laurent Mosoni, Laurence Roszyk, Vincent Sapin, Didier Attaix, Boris Jung, Samir Jaber, and Jean-Etienne Bazin.
    • General Intensive Care Unit, Hotel-Dieu Hospital, University Hospital of Clermont-Ferrand, Boulevard L. Malfreyt, Clermond-Ferrand, 63058, France.
    • Crit Care. 2008 Jan 1;12(5):R116.

    IntroductionControlled mechanical ventilation (CMV) induces profound modifications of diaphragm protein metabolism, including muscle atrophy and severe ventilator-induced diaphragmatic dysfunction. Diaphragmatic modifications could be decreased by spontaneous breathing. We hypothesized that mechanical ventilation in pressure support ventilation (PSV), which preserves diaphragm muscle activity, would limit diaphragmatic protein catabolism.MethodsForty-two adult Sprague-Dawley rats were included in this prospective randomized animal study. After intraperitoneal anesthesia, animals were randomly assigned to the control group or to receive 6 or 18 hours of CMV or PSV. After sacrifice and incubation with 14C-phenylalanine, in vitro proteolysis and protein synthesis were measured on the costal region of the diaphragm. We also measured myofibrillar protein carbonyl levels and the activity of 20S proteasome and tripeptidylpeptidase II.ResultsCompared with control animals, diaphragmatic protein catabolism was significantly increased after 18 hours of CMV (33%, P = 0.0001) but not after 6 hours. CMV also decreased protein synthesis by 50% (P = 0.0012) after 6 hours and by 65% (P < 0.0001) after 18 hours of mechanical ventilation. Both 20S proteasome activity levels were increased by CMV. Compared with CMV, 6 and 18 hours of PSV showed no significant increase in proteolysis. PSV did not significantly increase protein synthesis versus controls. Both CMV and PSV increased protein carbonyl levels after 18 hours of mechanical ventilation from +63% (P < 0.001) and +82% (P < 0.0005), respectively.ConclusionsPSV is efficient at reducing mechanical ventilation-induced proteolysis and inhibition of protein synthesis without modifications in the level of oxidative injury compared with continuous mechanical ventilation. PSV could be an interesting alternative to limit ventilator-induced diaphragmatic dysfunction.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…