• Br J Anaesth · Apr 2010

    Sevoflurane preserves the endothelial glycocalyx against ischaemia-reperfusion injury.

    • T Annecke, D Chappell, C Chen, M Jacob, U Welsch, C P Sommerhoff, M Rehm, P F Conzen, and B F Becker.
    • Clinic of Anaesthesiology, Ludwig-Maximilians-University Munich, Germany. thorsten.annecke@med.uni-muenchen.de
    • Br J Anaesth. 2010 Apr 1;104(4):414-21.

    BackgroundHealthy vascular endothelium is coated by the glycocalyx, important in multiple endothelial functions, but destroyed by ischaemia-reperfusion. The impact of volatile anaesthetics on this fragile structure has not been investigated. We evaluated the effect of cardiac pre- and post-conditioning with sevoflurane on integrity of the endothelial glycocalyx in conjunction with coronary vascular function.MethodsIsolated guinea pig hearts perfused with Krebs-Henseleit buffer underwent 20 min stopped-flow ischaemia (37 degrees C), either without or with 1 MAC sevoflurane. This was applied for 15 min before, for 20 min after, or both before and after ischaemia. Transudate was collected for assessing coronary net fluid extravasation and histamine release by mast cells. Coronary release of syndecan-1 and heparan sulphate was measured. In additional experiments with and without continuous sevoflurane, cathepsin B and tryptase beta-like protease activity were measured in effluent. Hearts were perfusion-fixed to visualize the endothelial glycocalyx.ResultsIschaemia led to a significant (P<0.05) increase by 70% in transudate formation during reperfusion only in hearts without sevoflurane. This was accompanied by significant (P<0.05) increases in heparan sulphate (four-fold) and syndecan release (6.5-fold), with electron microscopy revealing massive degradation of glycocalyx. After ischaemia, histamine was released into transudate, and cathepsin B activity increased in effluent (P<0.05). Sevoflurane application attenuated all these changes, except for histamine release.ConclusionsSevoflurane protects the endothelial glycocalyx from ischaemia-reperfusion-induced degradation, with both preconditioning and rapid post-conditioning being successful. The mechanism seems to involve attenuation of lysosomal cathepsin B release and to be independent from tissue mast cell degranulation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…