• J. Pharmacol. Exp. Ther. · Jul 2003

    Amide local anesthetics potently inhibit the human tandem pore domain background K+ channel TASK-2 (KCNK5).

    • Christoph H Kindler, Matthias Paul, Hilary Zou, Canhui Liu, Bruce D Winegar, Andrew T Gray, and C Spencer Yost.
    • Attending Physician, Department of Anesthesia, University Clinics, Kantonsspital, CH-4031 Basel, Switzerland. ckindler@uhbs.ch
    • J. Pharmacol. Exp. Ther. 2003 Jul 1;306(1):84-92.

    AbstractBlockade of voltage-gated sodium (Na+) channels by local anesthetics represents the main mechanism for inhibition of impulse propagation. Local anesthetic-induced potassium (K+) channel inhibition is also known to influence transmission of sensory impulses and to potentiate inhibition. K+ channels involved in this mechanism may belong to the emerging family of background tandem pore domain K+ channels (2P K+ channels). To determine more precisely the effects of local anesthetics on members of this ion channel family, we heterologously expressed the 2P K+ channels TASK-2 (KCNK5), TASK-1 (KCNK3), and chimeric TASK-1/TASK-2 channels in oocytes of Xenopus laevis. TASK-2 cDNA-transfected HEK 293 cells were used for single-channel recordings. Local anesthetic inhibition of TASK-2 was dose-dependent, agent-specific, and stereoselective. The IC50 values for R-(+)-bupivacaine and S-(-)-bupivacaine were 17 and 43 micro M and for R-(+)-ropivacaine and S-(-)-ropivacaine, 85 and 236 micro M. Lidocaine (1 mM) inhibited TASK-2 currents by 55 +/- 4%, whereas its quaternary positively charged analog N-ethyl lidocaine (QX314) had no effect. Bupivacaine (100 micro M) decreased channel open probability from 20.8 +/- 1.6% to 5.6 +/- 2.2%. Local anesthetics [300 micro M R-(+)-bupivacaine] caused significantly greater depolarization of the resting membrane potential of TASK-2-expressing oocytes compared with water-injected control oocytes (15.8 +/- 2.5 mV versus 0.1 +/- 0.05 mV; p < 0.001). Chimeric TASK-1/TASK-2 2P K+ channel subunits that retained pH sensitivity demonstrated that the carboxy domain of TASK-2 mediates the greater local anesthetic sensitivity of TASK-2. These results show that clinically achievable concentrations of local anesthetics inhibit background K+ channel function and may thereby enhance conduction blockade.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.