• Statistics in medicine · Oct 2002

    Comparative Study

    Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random.

    • John S Preisser, Kurt K Lohman, and Paul J Rathouz.
    • Department of Biostatistics, CB #7420, School of Public Health, University of North Carolina, Chapel Hill 27599, USA. jpreisse@bios.unc.edu
    • Stat Med. 2002 Oct 30;21(20):3035-54.

    AbstractThe generalized estimating equations (GEE) approach is commonly used to model incomplete longitudinal binary data. When drop-outs are missing at random through dependence on observed responses (MAR), GEE may give biased parameter estimates in the model for the marginal means. A weighted estimating equations approach gives consistent estimation under MAR when the drop-out mechanism is correctly specified. In this approach, observations or person-visits are weighted inversely proportional to their probability of being observed. Using a simulation study, we compare the performance of unweighted and weighted GEE in models for time-specific means of a repeated binary response with MAR drop-outs. Weighted GEE resulted in smaller finite sample bias than GEE. However, when the drop-out model was misspecified, weighted GEE sometimes performed worse than GEE. Weighted GEE with observation-level weights gave more efficient estimates than a weighted GEE procedure with cluster-level weights.Copyright 2002 John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…